
Principles of

Integrative Environmental Simulations

Rolf Hennicker

G LO W A
Danube

Sebastian Bauer, Stephan Janisch, Matthias Ludwig

Ludwig-Maximilans-Universität München

Integrative Techniques, Scenarios and Strategies for the Future of Water in the

Upper Danube Basin (2000 – 2010)

Research Groups and Investigation Area

• Hydrology

• Plant Ecology

• Glaciology

• Meteorology

• Groundwater

• Surface Water

• Environmental Psychology

• Tourism Research

• Water Supply

• Agricultural Economics

• Environmental Economics

Social Sciences

Natural Sciences

Austria

Czech

Republic

Bavaria

Baden-

Wuerttemberg

Switzerland

Italy

Upper Danube Basin:

• Area: 77.000 km²

• Population: 8.2 Mio.

• Elevation Gradient: 3300 m

+ Informatics

Mutually Dependent Processes in Nature and Society

• „Stand-alone“ modelling of the single processes is not sufficient !

• An integrative view is needed !

General Goal

Development of an integrative platform for

• coupled simulations of various models of natural-science and

socio-economic disciplines

• support of decision making on the basis of scenarios for changing

climate and society

Tasks of the Informatics group

• support for the conceptual integration of the various disciplines

• development of a framework for coupled simulations

Crucial Aspects of Integrative Simulations

 Identification of interfaces for data exchange (between the different models)

 Consistent modeling of the simulation space

 Treatment of time (life cycle and coordination of simulation models)

 Modeling of decision making actors (housholds, water suppliers, farmers, …)

Development Principles

• Common graphical modeling language (UML) used by all project

groups for the description of interfaces, concepts and designs

• Framework technology

to facilitate the integration of simulation models,

to implement generally valid rules

• Formal methods to verify critical parts of the integrative system

System Architecture

Aspect “Data Exchange”: Modeling of Interfaces

<<exports>> <<exports>>

<<imports>> <<imports>>

<<interface>>

LandToRiver

getSurfaceRunoff()

RivernetworkAtmosphere

<<interface>>

LandToAtmo

getSoilTemperature()

<<interface>>

AtmoToLand

getAirPressure()

<<interface>>

RiverToLand

getRiverLevel()

Landsurface

<<imports>> <<imports>>

<<exports>>

<<exports>>

Aspect “Simulation Space“

Approach

 a simulation area consists of a set of “proxels” (process pixels, 1km x 1km)

 each proxel can be identified by a unique proxel id (pid) and is modeled as an

object which has a “state”

 computations are performed “proxelwise“

abstract

concrete

System Architecture (revisited)

The Framework Idea

• Extract common properties and rules which hold for all simulation models
and implement them in a general, abstract template.

• The model developer must only implement the open pieces of the template
(according to his/her domain).

Example (writing a letter)

abstract template

concrete instantiation

Take sheet Write Text Put in envelope Put stamp

The Developer Framework

Common (static) properties of all simulation models

<<extends>> <<extends>> <<extends>> <<extends>>

Aspect “Time”: Common Life Cycle of Simulation Models

run()

getData()

compute()

provide()
getData

compute

provide

provide

The Coordination Problem

• All simulation models run in parallel and exchange date at run time.

• Each model participating in an integrative simulation has an individual

local time step (e.g. 1 h, 1 day, 1 month).

• Every simulation model must be supplied with valid data, i. e. with data

that fits to the local model time of the importing simulation model.

const simStart = 0

const simEnd = 6

range Time = simStart..simEnd

property VALIDDATA(User, StepUser, Prov, StepProv) = VD[simStart][simStart],

VD[nextGet:Time][nextProv:Time] =

// no obsolete data

(when (nextGet<nextProv)

[User].get[nextGet] -> VD[nextGet+StepUser][nextProv]

// no overwritten data

|when (nextGet>=nextProv)

[Prov].prov[nextProv] -> VD[nextGet][nextProv+StepProv]).

Process algebrac specification with FSP [Magee, Kramer]:

System Architecture (revisited)

12. -14. Oktober Nationale GLOWA-Konferenz Potsdam 16

Scenario for climate change and/or society development

Integrative simulation

Result data, processing and analysis

Application

Climate and Society Scenarios

Configuration of Integrative Simulations

Results for the Upper Danube Basin (2011 – 2060)

• Used Climate Scenario (IPCC):

temperature increase 3.3 C – 5.2 C between 1990 and 2090.

• Trends for precipitation:

More rainfall in winter, less in summer, per year -3.5% to -16.4%

• Consequences:

 Reduction of water power production

 Possible restrictions for ship traffic in summer due to low water levels

 30 – 60 days less snow cover per year in lower alpine regions due to

temperature increase but possible improvements in high-level alpine regions

 Less winter tourism but moderate increase of summer tourism

• Further results

 Less private water use expected (around 20%) due to changing behaviours and

new technologies (for saving water)

 No expected shortage of drinking water, but the need for temporary adaptation

strategies of water suppliers is likely (e.g. more cooperation and networks)

 (Almost) all glaciers in the Upper Danube catchment will vanish until 2045

Conclusion: Experiences on the Role of Informatics

• Well-known methods of Informatics like abstraction and separation of concerns

can be very useful for the conceptual integration in multy-disciplinary projects.

• As a tool for communication the use of a common graphical modelling language

(UML) has been proven to be very valuable:

 more precision in discussions between scientists of different disciplines,

 common understanding of the integrative aspects

• Framework technology

 supports model developers to integrate their simulation models into the overall

system structure

 implements general rules (templates) which support the reliability of the system

• With the help of formal methods the correctness of the temporal coordination

(being the heart of the whole system) could be verified.

Mutually Dependent Processes in Nature and Society

• „Stand-alone“ modelling of the single processes is not sufficient

• Integrative view is needed

<<interface>>

LandToRiver

getSurfaceRunoff()

Hierarchical Structure

RivernetworkAtmosphere

Landsurface

Soil SnowBiological

LandsurfaceController

<<interface>>

SoilToLSC

<<interface>>

LSCToSoil

<<interface>>

BiologicalToLSC

<<interface>>

LSCToBiological

<<interface>>

SnowToLSC

<<interface>>

LSCToSnow

<<interface>>

LandToAtmo

getSoilTemperature()

<<interface>>

AtmoToLand

getAirPressure()

<<interface>>

RiverToLand

getRiverLevel()

M1

M2

get[t=0]

compget[t=0]

gets overwritten data!

Example:

The Coordination Problem

comp

prov[t=3] get[t=3]

prov[t=0]

prov[t=0]

M1 time step = 2, M2 time step = 3

prov[t=2] get[t=2]

M1

M2

get[t=0]

compget[t=0]

compprov[t=0]

prov[t=0]

prov[t=2] get[t=2] comp prov[t=4] get[t=4]

gets obsolete data!

• Each simulation model participating in an integrative simulation has an

individual local time step (e.g. 1 h, 1 day, 1 month).

• Every simulation model must be supplied with valid data, i. e. with data

that fits to the local model time of the importing simulation model.

Formalisation of the Coordination Problem

const simStart = 0

const simEnd = 6

range Time = simStart..simEnd

property VALIDDATA(User, StepUser, Prov, StepProv) = VD[simStart][simStart],

VD[nextGet:Time][nextProv:Time] =

// no obsolete data

(when (nextGet<nextProv)

[User].get[nextGet] -> VD[nextGet+StepUser][nextProv]

// no overwritten data

|when (nextGet>=nextProv)

[Prov].prov[nextProv] -> VD[nextGet][nextProv+StepProv]).

Process algebrac specification with FSP [Magee, Kramer]:

Idea:

• Consider simulation models pairwise and only under one role at a time:

either as a user or as a provider of data.

• A user must not get data “too early“,

a provider must not deliver data “too early“.

Process MODEL

MODEL(step) = (start -> INIT),

INIT = (enterProv[simStart] -> prov[simStart] ->

exitProv[simStart] -> M[simStart]),

M[t:Time] =

if (t+step <= simEnd)

then (enterGet[t] -> get[t] -> exitGet[t] ->

compute[t] ->

enterProv[t+step] -> prov[t+step] -> exitProv}[t+step] -> M[t+step])

else STOP.

Process TIMECONTROLLER
const nrModels = 2

range Models = 1..nrModels

TIMECONTROLLER(step1,step2) =

(start -> TC[simStart][simStart][simStart][simStart]),

TC[nextGet1:Time][nextProv1:Time][nextGet2:Time][nextProv2:Time] =

//enterGet

(when (t<nextProv1 & t<nextProv2)

[Models].enterGet[t:Time] ->

TC[nextGet1][nextProv1][nextGet2][nextProv2]

//exitGet

|[1].exitGet[t:Time] -> TC[t+step1][nextProv1][nextGet2][nextProv2]

|[2].exitGet[t:Time] -> TC[nextGet1][nextProv1][t+step2][nextProv2]

//enterProv

|when (nextGet1>=t & nextGet2>=t)

[Models].enterProv[t:Time] ->

TC[nextGet1][nextProv1][nextGet2][nextProv2]

//exitProv

|[1].exitProv[t:Time] -> TC[nextGet1][t+step1][nextGet2][nextProv2]

|[2].exitProv[t:Time] -> TC[nextGet1][nextProv1][nextGet2][t+step2]).

Verification of the Design Model

Design model of an integrative simulation

||SIM-SYS = ([1]:MODEL(2) || [2]:MODEL(3) || TIMECONTROLLER(2,3)).

Check of the requirements

SIM-SYS |= VALIDDATA(User=1,StepUser=2,Prov=2,StepProv=3)

i.e. (SIM-SYS || VALIDDATA(User=1,StepUser=2,Prov=2,StepProv=3))

Error state not reachable!

SIM-SYS |= VALIDDATA(User=2,StepUser=3,Prov=1,StepProv=2)

The Coordination Framework

System Architecture (continued)

DeepActor Models: Common Properties

• Deep actor models integrate into their simulations decision-making entities,

called actors (e.g. households, water-suppliers, farmers, tourists).

• Any actor has a repository of potential plans that the actor can execute

(initial plans) .

• In each computation step an actor decides which of the initial plans should

actually be executed (active plans).

• To support decisions each actor has

 sensors through which he can observe the "environment" and

 a history to remember previous decisions

The DeepActor Framework

Common structural properties of all DeepActor models

Common Behaviour of all DeepActor Models

options

rating

execute filter

querymodelGetData

modelPreCompute

modelPostCompute

run()

getData()

compute()

provide()

getData()

compute()

provide()

modelGetData()

…

modelGetData()

…

