
Embedded Systems Design –

Scientific Challenges and

Work Directions

Joseph Sifakis

VERIMAG Laboratory

ECSS 09

Paris, October 9, 2009

The Evolution of Informatics

Foundations -

Alan Turing, Kurt

Gödel

Scientific Computing

– Defence Applications
WEB –

Information Society

Embedded Systems:

Computing + Physicality

 Seamless revolution

 95% of chips are embedded

 Convergence between Computing

and Telecommunications

 Graphic Interfaces, Mouse

 Information Systems:

Commercial Applications

 Integrated circuits

Informatics is a young discipline, driven by exponential growth of components and their applications.

The Internet of Things:

Convergence between

Embedded Systems and

the Web

Multi-core

Systems

1936

1945

1970

1980 1990

2000 2015

2010

3

Embedded Systems

An Embedded System integrates software and hardware jointly and specifically

designed to provide given services, which are often critical.

O

V

E

R

V

I

E

W
4

 System Design Today

 Research Challenges

 Marry Physicality and Computation

 Encompass Heterogeneity – Components

 Cope with Complexity – Constructivity

 Cope with Uncertainty – Adaptivity

 Embedded Systems Design

 Discussion

System Design – Trends

5

Embedded systems break with ordinary IT technologies.

It is hard to jointly meet technical requirements such as

 Reactivity: responding within known and guaranteed delay

Ex : flight controller

 Autonomy : provide continuous service without human

intervention

Ex : no manual start, optimal power management

 Dependability : guaranteed service in any case

Ex : attacks, hardware failures, software execution errors

...and also take into account economic requirements for optimal

quality/cost

Technological challenge:
Building systems of guaranteed functionality and quality,
at an acceptable cost

System Design – State-of-the Art

 Critical systems of low complexity

 Flight controller

 Complex « best effort » systems

 Telecommunication systems

We need

 Affordable critical systems

Ex : active safety, health, autonomous robotic devices

 Successful integration of heterogeneous systems of

systems

 Internet of Things

 Automated Transport Systems

 Smart Grids

 « Ambient Intelligence»

T
O

M
O

R
R

O
W

T
O

D
A

Y
We master – at a high cost two types of systems which are

difficult to integrate:

System Design – a Long Way to go

Suggested by T. Henzinger: T. Henzinger, J. Sifakis “The Embedded Systems Design Challenge” FM06

Theory for building artifacts with

predictable behavior

Lack of results allowing

constructivity

Physics Computer Science

System Design – a Long Way to go

The design of large IT systems
e.g. microprocessors, mobile telecommunication platforms, web application platforms

is a risky undertaking mobilizing hundreds of engineers for several years

Difficulties
 Complexity – mainly for building systems by reusing existing

components

 Requirements are often incomplete, and ambiguous (specified in

natural language)

 Design approaches

 are empirical and based on the expertise

and experience of teams

 reuse/extend/improve solutions that have

proved to be efficient and robust

Consequences
 Very often large IT projects go over budget,

over time, deliver poor quality

 Of these, 40% fail, 30% partially succeed, 30% succeed

System Design – a Long Way to go

"It has long been my personal view that the separation of practical and theoretical

work is artificial and injurious.

Much of the practical work done in computing, both in software and in hardware

design, is unsound and clumsy because the people who do it have not any clear

understanding of the fundamental design principles of their work.

Most of the abstract mathematical and theoretical work is sterile because it has no

point of contact with real computing.

Christopher Strachey (1916-1975)

There is an increasing gap between:

 Our technological capabilities

for treating and transmitting

information

 Our know-how in computing

systems engineering

System Design – Simplified View

Design is the process of deriving from given requirements, an executable

model from which a system can be generated (more or less automatically).

Requirements

The expected behavior of the

system to be designed with

respect to its potential users

and its environment

Program
Executable platform-

independent model meeting

the requirements

System composed of HW

and SW – the HW platform

my be given

SW

HW

System Design – Essential Properties

11

Correctness

Design methodology ensuring correct implementation from a system

model

Productivity

Reuse, separate compilation,

Support for heterogeneous programming models, DSL

 Natural expression of data parallelism and functional parallelism

Performance

Optimal use of physical resources

Parsimony

 Design choices are only implied by requirements – no superfluous

constraints

 Use degrees of freedom in the design process, e.g. parallelism or non-

determinism, for choosing the “best” implementation

Achieving Correctness

Ad hoc models
e.g. SystemC simulation

Formal models – Verification

Physical prototypes
e.g. testing

Models
(Virtual SW Prototypes)

By construction:

algorithms, architectures
By Checking

Achieving correctness

Correctness: a system is correct if it meets its requirements

Achieving Correctness - Verification

Verification

Method

RequirementsSystem

Model

YES, NO, DON’TKNOW

Should be:

 faithful e.g.

whatever property

is satisfied for the

model holds for the

real system

 generated

automatically

from system

descriptions

Should be:

 consistent e.g.

there exists some

model satisfying

them

 complete e.g. they

tightly characterize

the system’s

behavior

 As a rule, for infinite state models all non trivial properties are

undecidable e.g. bounded memory

 Intrinsically high complexity for finite state models (state explosion

problem)

Achieving Correctness - Requirements specification

always(inev (enable(send)))

always(inev (enable(receive)))

Using formulas, in particular

temporal logic, to characterize a

set of execution structures e.g.

traces, execution trees

Good for expressing global

properties such as mutual

exclusion, termination, fairness

Property-based

Using a machine (monitor) to

specify observable behavior

send

receive

State-based

Good for characterizing causal

dependencies e.g. sequences

of actions

We need a combination of both property-based and state-based styles

Achieving Correctness - Requirements specification

 Temporal logic was a breakthrough in understanding and formalizing

requirements for concurrent systems e.g. mutex, fairness

 Nonetheless, the declarative style is not always easy to master and

understand - Moving towards a “less declarative” style e.g. MSC,

modal automata

 We need requirement specification languages for engineers e.g.

PSL/Sugar

 Much to be done for extra-functional requirements characterizing:

 security (e.g. privacy properties, electronic voting)

 reconfigurability (e.g. non interference of features)

 quality of service (e.g. degree of jitter).

f1

Achieving Correctness - Building models

v= …

u= ..

x= …

y= …

z=x y

MODEL

z

x

y
u

v

HW

For hardware, it is easy to get faithful logical finite state models

represented as systems of boolean equations

semantics

Achieving Correctness - Building models (2/3)

if….

while valid do

if x<0 then z:=x

else z:=-x;

while …

P
R

O
G

R
A

M

semantics

For software this may be much harder ….

v
a
lidx<0

z:=x

x>=0

z:=-x

valid

S
E

M
A

N
T

IC

M
O

D
E

L

v
a

lidb

z:=b

b

z:= b

valid

A
B

S
T

R
A

C
T

M
O

D
E

L

Achieving Correctness - Building models (3/3)

Tasks
Command

Handlers

Event

Handlers

APPLICATION

SW

For mixed Software / Hardware systems

 there are no faithful modeling techniques as we have a poor

understanding of how software and the underlying platform interact

 validation by testing physical prototypes or by simulation of ad hoc

models

Antenna

Task

Scheduler

Sensors

Event

Scheduler

Timers

EXECUTION

PLATFORM

O

V

E

R

V

I

E

W
19

 System Design Today

 Research Challenges

 Marry Physicality and Computation

 Encompass Heterogeneity – Components

 Cope with Complexity – Constructivity

 Cope with Uncertainty – Adaptivity

 Embedded Systems Design

 Discussion

20

Embedded Systems Design – Grand Challenge

Computing:
algorithms
protocols
architectures

Environment
constraints:
 Performance
(deadlines, jitter,
throughput)
 Dependability
(security, safety,
availability)

Execution
constraints:
CPU speed
memory
power
failure rates

EMBEDDED SYSTEM

21

Embedded Systems Design – Grand Challenge

Embedded System Design

is

generalized hardware design

Computing:
algorithms
protocols
architectures

Environment
constraints:
 Performance
(deadlines, jitter,
throughput)
 Dependability
(security, safety,
availability)

Execution
constraints:
CPU speed
memory
power
failure rates

EMBEDDED SYSTEM

22

Embedded Systems Design – Grand Challenge

Embedded System Design

is

generalized control design

Computing:
algorithms
protocols
architectures

Environment
constraints:
 Performance
(deadlines, jitter,
throughput)
 Dependability
(security, safety,
availability)

Execution
constraints:
CPU speed
memory
power
failure rates

EMBEDDED SYSTEM

23

Embedded Systems Design – Grand Challenge

Embedded System Design coherently integrates all these

We need to revisit and revise the most basic computing paradigms

to include methods from EE and Control

Computing:
algorithms
protocols
architectures

Environment
constraints:
 Performance
(deadlines, jitter,
throughput)
Dependability
(security, safety,
availability)

Execution
constraints:
CPU speed
memory
power
failure rates

EMBEDDED SYSTEM

O

V

E

R

V

I

E

W
24

 System Design Today

 Research Challenges

 Marry Physicality and Computation

 Encompass Heterogeneity – Components

 Cope with Complexity – Constructivity

 Cope with Uncertainty – Adaptivity

 Embedded Systems Design

 Discussion

25

Studies the laws governing

energy, matter and their

relationships

Studies a given « reality »

Physical systems – Analytic

models

Continuous mathematics

Differential equations

Estimation theory -

robustness

Constructivity, Predictability

Mature

Studies foundations of

information and computation

Studies created universes

Computing systems – Machines

Discrete mathematics - Logic

Automata, Algorithms and

Complexity Theory

Verification, Test

Promising

Marry Physicality and Computation

Physics Computer Science

Marry Physicality and Computation

2626

Physical Systems

Engineering

Analytic Models

Component: transfer function

Composition: parallel

Connection: data flow

Computing Systems

Engineering

Computational Models

Component: subroutine

Composition: sequential

Connection: control flow

Marry Physicality and Computation

27

Matlab/Simulink

Model

Marry Physicality and Computation

UML Model
(Rational Rose)

O

V

E

R

V

I

E

W
29

 System Design Today

 Research Challenges

 Marry Physicality and Computation

 Encompass Heterogeneity – Components

 Cope with Complexity – Constructivity

 Cope with Uncertainty – Adaptivity

 Embedded Systems Design

 Discussion

Encompass Heterogeneity - Components

Heterogeneity: Embedded systems are built from components with different

characteristics

 Execution: synchronous and asynchronous components

 Interaction: function call, broadcast, rendezvous, monitors

 Abstraction levels: hardware, execution platform, application software

 SW Component frameworks:

 Coordination languages extensions of programming languages e.g.

BPEL, Javaspaces, TSpaces, Concurrent Fortran, NesC

 Middleware e.g. Corba, Javabeans, .NET

 Software development environments: PCTE, SWbus, Softbench, Eclipse

 System modeling languages: Statecharts, SysML, Matlab/Simulink, AADL,

Ptolemy

 Hardware description languages: Verilog, VHDL, SystemC

Build complex systems by composing components (simpler systems).

This confers numerous advantages such as productivity and correctness

Thread-based programming

Encompass Heterogeneity - Components

Actor-based programming

Software Engineering Systems Engineering

Encompass Heterogeneity - Components

Build a component C satisfying given requirements f, from

 C0 a set of atomic components described by their behavior

 GL ={gl1, …, gli, …} a set of glue operators on components

c1 c’1

gl1

c2 c’2

gl12

satisfies fgl2

Move from single low-level composition operators e.g. automata-based

to families of high-level composition operators e.g. protocols, controllers

We need a unified composition paradigm for describing and analyzing

the coordination between components to formulate system designs in

terms of tangible, well-founded and organized concepts

O

V

E

R

V

I

E

W
33

 System Design Today

 Research Challenges

 Marry Physicality and Computation

 Encompass Heterogeneity – Components

 Cope with Complexity – Constructivity

 Cope with Uncertainty – Adaptivity

 Embedded Systems Design

 Discussion

34

Cope with Complexity – Constructivity

Today, a posteriori verification at high development costs limited to

medium complexity systems

Tomorrow, correct-by-construction results should advantageously take

into account architectures and their features.

There is a large space to be explored, between full constructivity and a

posteriori verification. Develop correct-by-construction results

 For particular

 architectures (e.g. client-server, star-like, time triggered)

 programming models (e.g. synchronous, data-flow)

 execution models (e.g. event triggered preemptable tasks)

 For specific classes of properties such as deadlock-freedom, mutual

exclusion, timeliness

Constructivity – Compositionality

Build correct systems from

correct components: rules for

proving global properties from

properties of

individual components

We need compositionality results for the preservation of progress properties such as

deadlock-freedom and liveness as well as extra-functional properties

gl

ci
sat Pi implies gl gl

~
sat gl(P1, ..,Pn)

gl

c1 cn

~

Constructivity – Composability

Essential properties of

components are preserved

when they are integrated

gl

gl

Property stability phenomena are poorly understood.

We need composability results e.g. non interaction of features in middleware,

composability of scheduling algorithms, of Web services, of aspects

X

sat Pgl
c1 cn

and sat P’gl’
c1 cn

implies sat P P’gl gl’
c1 cn

Constructivity – Checking for Deadlock-freedom

O

V

E

R

V

I

E

W
38

 System Design Today

 Research Challenges

 Marry Physicality and Computation

 Encompass Heterogeneity – Components

 Cope with Complexity – Constructivity

 Cope with Uncertainty – Adaptivity

 Embedded Systems Design

 Discussion

Cope with Uncertainty – Predictability

 Systems must ensure predictable behavior in interaction with

uncertain environments

 Uncertainty is characterized as the difference between

 average or nominal behavior

 worst-case or faulty behavior

 The trend is towards drastically increasing uncertainty, due to:

 Interaction with complex, non-deterministic, possibly hostile
external environments

 Execution platforms with sophisticated HW/SW architectures
(layering, caches, speculative execution, …)

Today, to cope with uncertainty, systems are often over-dimensioned

and make a sub-optimal use of their resources : static and separated

allocation for each critical service

Cope with Uncertainty – Predictability
D

is
tr

ib
u

ti
o

n
 o

f
E

T

BCET WCET

Possible ET

Upper

Bound

Lower

Bound

Estimated ET

Execution times

For simple operations WCET may be 300 BCET

Acknowledgement: Reinhard Wilhelm “Timing Analysis and Predictability” July 2008

Cope with Uncertainty – Predictability

BAD STATES

Critical systems engineering

based on worst-case analysis

and static resource reservation

e.g. hard real-time approaches,

massive redundancy

Increasing uncertainty gives rise to 2 diverging design paradigms

ERROR STATES

Best effort engineering

based on average case

analysis

e.g. soft real-time for

optimization of speed,

memory, bandwidth, power

Cope with Uncertainty – Predictability

The separation between critical and best effort engineering implies

increasing costs and reduced hardware reliability, e.g. increasing number

of ECUs in cars.

We are moving from federated to integrated architectures (both critical

and non critical functions on one chip) while striving for predictability by

Reducing intrinsic and estimated uncertainty through

 Simplification of architectures, predictable cache replacement

policies

 Determinization of the observable behavior e.g. time triggered

systems

Developing adaptive control techniques combining the two paradigms:

 Satisfaction of critical properties

 Efficiency by optimal use of the globally available resources

(processor, memory, power).

Cope with Uncertainty – Adaptivity

43

Learning
Estimation of parameters

Strategy and decision making
Choosing amongst possible objective

APPLICATION

Configuration and Planning
Meeting a given objective

CONTROLLER

input state

Cope with Uncertainty: Adaptivity

44

Planning

Learning

Managing Conflicting Objectives

Movie would have been better …

Go to: 1) Stadium 2) Movie 3) Restaurant

Cope with Uncertainty – Adaptivity

45

estimate average execution times

choose a feasible schedule
maximizing quality and meeting deadlines

compute best schedules for given quality

c1(q)
d1

c2(q)
d2

c4(q)
d4

c6(q)
d6

c5(q)
d5

c3(q)
d3

MPEG
encoder

(next action, q) time

Cope with Uncertainty - Adaptivity

46

O

V

E

R

V

I

E

W
47

 System Design Today

 Research Challenges

 Marry Physicality and Computation

 Encompass Heterogeneity – Components

 Cope with Complexity – Constructivity

 Cope with Uncertainty – Adaptivity

 Embedded Systems Design

 Discussion

Model-based Design - Principle

Extension of an existing language

with concepts and primitives for

concurrency and resource

management

Programming

Model

Execution Model

Execution Platform

Abstract machine encompassing

mechanisms for efficient and

dependable execution

Compiler
Implements a mapping from the

PM to the EM - correctness-by -

construction

Model-based Design – Synchronous Computation

Synchronous programming

languages such as Lustre,

Matlab/Simulink

Programming

Model

Execution Model

Execution Infrastructure

Compiler

Monolithic execution model e.g.

single task

Theory for checking correctness

of the code generation process

e.g. confluence and deadlock-

freedom

Model-based Design – Event-driven Computation

ADA with preemtable tasks and

static priorities

Programming

Model

Execution Model

Execution Infrastructure

Compiler

Dedicated runtime for

multitasking

Scheduling theory e.g. RMA

Model-based Design – A more detailed View

Compiler

Environment

Model
Requirements

System

Model

Analysis

Diagnostics

Application

SW

Code

Generation

Implementation

Programming Model

S
W

P
ro

d
u

c
ti
v
it
y

P
e

rf
o

rm
a

n
c
e

&
C

o
rr

e
c
tn

e
s
s

Correctness

C
o

rr
e

c
tn

e
s
s

52

Compiler

Compiler

Task1 Task2 Task3 Task4
Event

Handler

Synchronization and resource management

Compiler

Security

Scheduler

Platform

Timing

QoS

Architecture

model
Application SW

Resource-aware Compilation

53

 Minimal architectures, reconfigurable, adaptive, with features for

safety and security

 Give up control to the application –

move resource management outside the kernel

 Supply and allow adaptive scheduling policies which take into

account the environmental context (ex: availability of critical

resources such as energy).

Operating systems are often:

 Far more complex than necessary

 Undependable

 With hidden functionality

 Difficult to manage and use efficiently

Move towards standards dedicated to specific domains
Ex: OSEK, ARINC, JavaCard, TinyOS

Operating Systems

54

Automation applications are of paramount importance –

their design and implementation raise difficult problems

Hybrid Systems – active research area

 Combination of continuous and discrete control techniques

 Multi-disciplinary integration aspects (control, numerical analysis,

computing)

 Modeling and Verification

 Distributed and fault-tolerant implementations (influence

communication delays, clock drift, aperiodic sampling)

 Use of control-based techniques for adaptivity

Control for Embedded Systems

55

Work Directions :

 Methodologies for domain-specific standards, such as :

- DO-178B Process Control Software Safety Certification

- Integrated Modular Avionics; Autosar

- Common Criteria for Information Technology Security Evaluation

 Certification methods and tools

 Architectures, protocols and algorithms for fault-tolerance and security taking into

account QoS requirements (real-time, availabability)

 Traditional techniques based on massive redundancy are of limited value

 Dependability should be a guiding concern from the very start of system

development. This applies to programming style, traceability, validation

techniques, fault-tolerance mechanisms, ...

Dependability

56

Adaptive distributed real-time systems, inherently dynamic, must adapt to

accommodate workload changes and to counter uncertainties in the

system and its environment

 Clock synchronization, parameter settings

 Specific routing algorithms

 Location discovery, neighbor discovery

 Group management (dormant, active-role assignment)

 Self-organization : backbone creation, leader election, collaboration

to provide a service

 Power management : turn-off of dormant nodes, periodical rotation

of active nodes to balance energy

Networked Embedded Systems

Integration of Methods and Tools

57

SystemC Matlab/Simulink SDL UML

AADL

VHDL Lustre-Esterel ADA RT-Java

OSEK ARINC Ravenscar JavaCard Symbian TinyOS

controller DSP FPGA SoC NoC

Autosar .NET Jini

Corba TTP CAN SafeBus Bluetooth WiFi

VxWorks POSIX WinCE

C C++ C# Java

HW

OS

NW

MW

PR

MO

O

V

E

R

V

I

E

W
58

 System Design Today

 Research Challenges

 Marry Physicality and Computation

 Encompass Heterogeneity – Components

 Cope with Complexity – Constructivity

 Cope with Uncertainty – Adaptivity

 Embedded Systems Design

 Discussion

59

Embedded Systems

break with traditional Systems Engineering. They need new design

techniques guaranteeing both functionality and quality (performance

and dependability) and taking into account market constraints

are an opportunity for reinvigorating and extending Computer Science

with new paradigms from Electrical Engineering and Control Theory.

This requires basic research effort for meeting four challenges

 Combining analytic and computational models

 Component-based construction of heterogeneous systems

 Constructivity at design time

 Adaptivity as a means for ensuring predictability

Discussion

In addition to meeting the research challenges, the development of

System Design as a Discipline requires formalization of the design

process as a sequence of correct-by-construction component-based

model transformations

60

THANK YOU

