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The Evolution of Informatics

Foundations -

Alan Turing, Kurt 

Gödel

Scientific Computing

– Defence Applications
WEB –

Information Society

Embedded Systems:

Computing + Physicality  

 Seamless revolution

 95% of chips are embedded

 Convergence between Computing 

and Telecommunications

 Graphic Interfaces, Mouse

 Information Systems: 

Commercial Applications 

 Integrated circuits

Informatics is a young discipline, driven by exponential growth of components and their applications.

The Internet of Things:
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Embedded Systems

An Embedded System integrates software and hardware jointly and specifically 

designed to provide given services, which are often critical. 
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System Design – Trends
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Embedded systems break with ordinary IT technologies. 

It is hard to jointly meet technical requirements such as

 Reactivity: responding within known and guaranteed delay

Ex : flight controller 

 Autonomy : provide continuous service without human 

intervention 

Ex : no manual start, optimal power management

 Dependability : guaranteed service in any case 

Ex : attacks, hardware failures, software execution errors

...and also take into account  economic requirements for optimal 

quality/cost

Technological challenge: 
Building systems of guaranteed functionality and quality, 
at an acceptable cost 



System Design – State-of-the Art

 Critical systems of low complexity

 Flight controller

 Complex « best effort » systems

 Telecommunication systems

We need 

 Affordable critical systems 

Ex : active safety, health, autonomous robotic devices

 Successful integration of heterogeneous systems of 

systems

 Internet of Things

 Automated Transport Systems

 Smart Grids

 « Ambient Intelligence»
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We master – at a high cost two types of systems which are 

difficult to integrate:



System Design – a Long Way to go

Suggested by T. Henzinger: T. Henzinger, J. Sifakis “The Embedded Systems Design Challenge” FM06

Theory for building artifacts with 

predictable behavior

Lack of results allowing 

constructivity

Physics Computer Science



System Design – a Long Way to go

The design of large IT systems
e.g. microprocessors, mobile telecommunication platforms, web application platforms

is a risky undertaking mobilizing hundreds of engineers  for several years

Difficulties 
 Complexity – mainly for building systems by reusing existing 

components

 Requirements are often incomplete, and ambiguous (specified in 

natural language)

 Design approaches 

 are empirical and based on the expertise  

and experience of teams

 reuse/extend/improve solutions that have 

proved to be efficient and robust

Consequences
 Very often large IT projects go over budget, 

over time, deliver poor quality

 Of these, 40% fail, 30% partially succeed, 30% succeed



System Design – a Long Way to go

"It has long been my personal view that the separation of practical and theoretical 

work is artificial and injurious. 

Much of the practical work done in computing, both in software and in hardware 

design, is unsound and clumsy because the people who do it have not any clear 

understanding of the fundamental design principles of their work. 

Most of the abstract mathematical and theoretical work is sterile because it has no 

point of contact with real computing. 

Christopher Strachey (1916-1975) 

There is an increasing gap between:

 Our technological capabilities 

for treating and transmitting 

information 

 Our know-how in computing 

systems engineering



System Design – Simplified View

Design is the process of deriving from given requirements, an executable 

model from which a system can be generated (more or less automatically).

Requirements

The expected behavior of the 

system to be designed with 

respect to its potential users 

and its environment

Program
Executable platform-

independent model meeting 

the requirements

System composed of HW 

and SW – the HW platform 

my be given

SW

HW



System Design – Essential Properties 
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Correctness

Design methodology ensuring correct implementation  from a system 

model   

Productivity

Reuse, separate compilation, 

Support for heterogeneous programming models, DSL

 Natural expression of data parallelism and functional parallelism

Performance

Optimal use of physical resources 

Parsimony

 Design choices are only implied by requirements – no superfluous 

constraints

 Use degrees of freedom in the design process, e.g. parallelism or non-

determinism, for choosing the “best” implementation 



Achieving Correctness

Ad hoc models 
e.g. SystemC simulation

Formal models – Verification

Physical prototypes
e.g. testing

Models 
(Virtual SW Prototypes)

By construction: 

algorithms, architectures
By Checking

Achieving correctness

Correctness: a system is correct if it meets its requirements 



Achieving Correctness - Verification

Verification 

Method

RequirementsSystem 

Model

YES, NO, DON’TKNOW

Should be: 

 faithful e.g. 

whatever property 

is satisfied for the 

model holds for the 

real system

 generated 

automatically

from system 

descriptions

Should be: 

 consistent e.g. 

there exists some 

model satisfying 

them

 complete e.g. they 

tightly characterize 

the system’s 

behavior

 As a rule, for infinite state models all non trivial properties are 

undecidable e.g. bounded memory

 Intrinsically high complexity for finite state models (state explosion 

problem)



Achieving Correctness - Requirements specification

always( inev ( enable( send ) ) )

always( inev ( enable( receive) ) )

Using formulas, in particular 

temporal logic, to characterize a 

set of execution structures e.g. 

traces, execution trees

Good for expressing global 

properties such as mutual 

exclusion, termination, fairness

Property-based

Using a machine (monitor) to 

specify observable behavior

send

receive

State-based

Good for characterizing causal 

dependencies e.g. sequences 

of actions

We need a combination of both property-based and state-based styles



Achieving Correctness - Requirements specification

 Temporal logic was a breakthrough in understanding and formalizing 

requirements for concurrent systems e.g. mutex, fairness

 Nonetheless, the declarative style is not always easy to master and 

understand - Moving towards a “less declarative” style e.g. MSC, 

modal automata

 We need requirement specification languages for engineers e.g. 

PSL/Sugar

 Much to be done for extra-functional requirements characterizing: 

 security (e.g. privacy properties, electronic voting) 

 reconfigurability (e.g. non interference of features) 

 quality of service (e.g. degree of jitter).

f1



Achieving Correctness - Building models

v= …

u= ..

x= …

y= …

z=x y

MODEL

z

x

y
u

v

HW

For hardware, it is easy to get faithful logical finite state models 

represented as systems of boolean equations

semantics



Achieving Correctness - Building models    (2/3)

if….

while  valid do

if x<0 then z:=x

else z:=-x;

while …  

P
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semantics

For software this may be much harder …. 

v
a
lidx<0 

z:=x

x>=0 

z:=-x

valid
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Achieving Correctness - Building models    (3/3)

Tasks
Command

Handlers

Event

Handlers

APPLICATION

SW

For mixed Software / Hardware systems 

 there are no faithful modeling techniques as we have a poor 

understanding of how software and the underlying platform interact 

 validation by testing physical prototypes or by simulation of ad hoc 

models

Antenna

Task

Scheduler

Sensors

Event

Scheduler

Timers

EXECUTION

PLATFORM
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Embedded Systems Design – Grand Challenge

Computing:  
algorithms         
protocols           
architectures

Environment
constraints:
 Performance 
(deadlines,  jitter, 
throughput)
 Dependability 
(security, safety, 
availability)

Execution 
constraints:
CPU speed 
memory  
power             
failure rates

EMBEDDED SYSTEM
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Embedded Systems Design – Grand Challenge

Embedded System Design 

is 

generalized hardware design

Computing:  
algorithms         
protocols           
architectures

Environment
constraints:
 Performance 
(deadlines,  jitter, 
throughput)
 Dependability 
(security, safety, 
availability)

Execution 
constraints:
CPU speed 
memory  
power             
failure rates

EMBEDDED SYSTEM
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Embedded Systems Design – Grand Challenge

Embedded System Design 

is

generalized  control design

Computing:  
algorithms         
protocols           
architectures

Environment
constraints:
 Performance 
(deadlines,  jitter, 
throughput)
 Dependability 
(security, safety, 
availability)

Execution 
constraints:
CPU speed 
memory  
power             
failure rates

EMBEDDED SYSTEM
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Embedded Systems Design – Grand Challenge

Embedded System Design coherently integrates all these

We need to revisit and revise the most basic computing paradigms 

to include methods from EE and Control 

Computing:  
algorithms         
protocols           
architectures

Environment
constraints:
 Performance 
(deadlines,  jitter, 
throughput)
Dependability 
(security, safety, 
availability)

Execution 
constraints:
CPU speed 
memory  
power             
failure rates

EMBEDDED SYSTEM
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Studies the laws governing 

energy, matter and their 

relationships

Studies a given « reality » 

Physical systems – Analytic 

models

Continuous mathematics 

Differential equations

Estimation theory -

robustness

Constructivity, Predictability

Mature

Studies foundations of 

information and computation

Studies created universes

Computing systems – Machines

Discrete mathematics - Logic

Automata, Algorithms and 

Complexity Theory

Verification, Test

Promising

Marry Physicality and Computation

Physics Computer Science



Marry Physicality and Computation
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Physical Systems 

Engineering 

Analytic Models

Component: transfer function    

Composition: parallel          

Connection: data flow 

Computing Systems 

Engineering

Computational Models

Component: subroutine 

Composition: sequential           

Connection: control flow 



Marry Physicality and Computation

27

Matlab/Simulink

Model



Marry Physicality and Computation

UML Model 
(Rational Rose)
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Encompass Heterogeneity - Components

Heterogeneity: Embedded systems are built from components with different 

characteristics 

 Execution: synchronous and asynchronous components

 Interaction: function call, broadcast, rendezvous, monitors

 Abstraction levels: hardware,  execution platform, application software

 SW Component frameworks:

 Coordination languages extensions of programming languages e.g. 

BPEL, Javaspaces, TSpaces, Concurrent Fortran, NesC

 Middleware e.g. Corba, Javabeans, .NET

 Software development environments: PCTE, SWbus, Softbench, Eclipse

 System modeling languages: Statecharts, SysML, Matlab/Simulink, AADL, 

Ptolemy

 Hardware description languages: Verilog, VHDL, SystemC

Build complex systems by composing components (simpler systems). 

This confers numerous advantages such as productivity and correctness



Thread-based programming

Encompass Heterogeneity - Components

Actor-based programming

Software Engineering Systems Engineering



Encompass Heterogeneity - Components

Build a component C satisfying given requirements f, from 

 C0 a set of atomic components described by their behavior

 GL ={gl1, …, gli, …} a set of glue operators on components

c1 c’1

gl1

c2 c’2 

gl12

satisfies fgl2

Move from  single low-level composition operators e.g. automata-based 

to families of high-level composition operators e.g. protocols, controllers

We need a unified composition paradigm for describing and analyzing 

the coordination between components to formulate system designs in 

terms of tangible, well-founded and organized concepts 
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Cope with Complexity – Constructivity

Today, a posteriori verification at high development costs limited to 

medium complexity systems

Tomorrow, correct-by-construction results should advantageously take 

into account architectures and their features. 

There is a large space to be explored, between full constructivity and a 

posteriori verification. Develop correct-by-construction results

 For particular 

 architectures (e.g. client-server, star-like, time triggered)

 programming models (e.g. synchronous,  data-flow)

 execution models (e.g. event triggered preemptable tasks) 

 For specific classes of properties such as deadlock-freedom, mutual 

exclusion, timeliness 



Constructivity – Compositionality

Build correct systems from 

correct components: rules for 

proving global properties from 

properties of 

individual components

We need compositionality results for the preservation of  progress properties such as  

deadlock-freedom and liveness as well as extra-functional properties

 

gl



ci
sat Pi implies gl gl

~
sat gl(P1, ..,Pn)

gl

c1 cn

~



Constructivity – Composability

Essential properties of 

components are preserved 

when they are integrated 

gl

 

gl



Property stability phenomena are poorly understood. 

We need composability results e.g. non interaction of features in middleware, 

composability of scheduling algorithms, of Web services, of aspects

X

sat Pgl
c1 cn

and sat P’gl’
c1 cn

implies sat P P’gl gl’
c1 cn



Constructivity – Checking for Deadlock-freedom 
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Cope with Uncertainty – Predictability

 Systems must ensure predictable behavior in interaction with 

uncertain environments

 Uncertainty is characterized as the difference between 

 average or nominal behavior

 worst-case or faulty behavior 

 The trend is towards drastically increasing uncertainty, due to:

 Interaction with complex, non-deterministic, possibly hostile 
external environments

 Execution platforms with sophisticated HW/SW architectures 
(layering, caches, speculative execution, …)

Today, to cope with uncertainty, systems are often over-dimensioned  

and make a sub-optimal use of their resources :  static and separated 

allocation for each critical service



Cope with Uncertainty – Predictability
D
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BCET WCET 

Possible ET

Upper

Bound 

Lower

Bound 

Estimated ET

Execution times

For simple operations WCET may be 300 BCET

Acknowledgement: Reinhard Wilhelm “Timing Analysis and Predictability” July 2008



Cope with Uncertainty – Predictability

BAD STATES

Critical systems engineering

based on worst-case analysis 

and static resource reservation 

e.g. hard real-time approaches, 

massive redundancy

Increasing uncertainty gives rise to 2 diverging design paradigms

ERROR STATES

Best effort engineering

based on average case 

analysis  

e.g. soft real-time for 

optimization of  speed, 

memory, bandwidth, power



Cope with Uncertainty – Predictability

The separation between critical and best effort engineering implies 

increasing costs and reduced hardware reliability, e.g. increasing  number 

of ECUs in cars.

We are moving from federated to integrated architectures (both critical 

and non critical functions on one chip) while striving for predictability by

Reducing intrinsic and estimated uncertainty through

 Simplification of architectures, predictable cache replacement 

policies

 Determinization of the observable behavior e.g. time triggered 

systems 

Developing adaptive control techniques combining the two paradigms: 

 Satisfaction of critical properties 

 Efficiency by optimal use of the globally available resources 

(processor, memory, power). 



Cope with Uncertainty – Adaptivity
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Learning 
Estimation of  parameters

Strategy and decision making
Choosing amongst possible objective

APPLICATION

Configuration and Planning
Meeting a given objective

CONTROLLER

input state



Cope with Uncertainty: Adaptivity
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Planning

Learning

Managing Conflicting Objectives 

Movie would have been better …

Go to:   1) Stadium   2) Movie  3) Restaurant



Cope with Uncertainty – Adaptivity
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estimate average execution times

choose a feasible schedule 
maximizing quality and meeting deadlines

compute best schedules for given quality

c1(q)
d1

c2(q)
d2

c4(q)
d4

c6(q)
d6

c5(q)
d5

c3(q)
d3

MPEG 
encoder

(next action, q) time



Cope with Uncertainty - Adaptivity
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Model-based Design - Principle

Extension of an existing language 

with concepts and primitives for 

concurrency and resource 

management 

Programming 

Model

Execution Model

Execution Platform

Abstract machine encompassing 

mechanisms for efficient and 

dependable execution

Compiler
Implements a mapping from the 

PM to the EM  - correctness-by -

construction



Model-based Design – Synchronous Computation

Synchronous programming 

languages such as Lustre, 

Matlab/Simulink

Programming 

Model

Execution Model

Execution Infrastructure

Compiler

Monolithic execution model e.g. 

single task

Theory for checking correctness 

of the code generation process 

e.g. confluence and deadlock-

freedom



Model-based Design – Event-driven Computation

ADA with preemtable tasks and 

static priorities

Programming 

Model

Execution Model

Execution Infrastructure

Compiler

Dedicated runtime for 

multitasking

Scheduling theory e.g. RMA



Model-based Design – A more detailed View

Compiler

Environment

Model
Requirements

System

Model

Analysis

Diagnostics

Application

SW

Code

Generation

Implementation

Programming Model

S
W
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Compiler

Compiler

Task1 Task2 Task3 Task4
Event

Handler

Synchronization and resource management

Compiler

Security

Scheduler

Platform

Timing

QoS

Architecture

model
Application SW

Resource-aware Compilation
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 Minimal architectures, reconfigurable, adaptive, with features for 

safety and security

 Give up control to the application –

move resource management outside the kernel

 Supply and allow adaptive scheduling policies which take into 

account the environmental context (ex: availability of critical 

resources such as energy). 

Operating systems are often:

 Far more complex than necessary

 Undependable

 With hidden functionality

 Difficult to manage and use efficiently

Move towards standards dedicated to specific domains 
Ex: OSEK, ARINC, JavaCard, TinyOS

Operating Systems
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Automation applications are of paramount importance –

their design and implementation raise difficult problems

Hybrid Systems – active research area

 Combination of continuous and discrete control  techniques

 Multi-disciplinary integration aspects (control, numerical analysis, 

computing)

 Modeling and Verification

 Distributed and fault-tolerant implementations (influence 

communication delays, clock drift, aperiodic sampling)

 Use of control-based techniques for adaptivity

Control for Embedded Systems
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Work Directions :

 Methodologies for domain-specific standards, such as :

- DO-178B Process Control Software Safety Certification 

- Integrated Modular Avionics; Autosar

- Common Criteria for Information Technology Security Evaluation 

 Certification methods and tools

 Architectures, protocols and algorithms for fault-tolerance and security taking into 

account QoS requirements (real-time, availabability)

 Traditional techniques based on massive redundancy are of limited value

 Dependability should be a guiding concern from the very start of system 

development. This applies to programming style, traceability, validation 

techniques, fault-tolerance mechanisms, ...

Dependability 
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Adaptive distributed real-time systems, inherently dynamic, must adapt to 

accommodate workload changes and to counter uncertainties in the 

system and its environment

 Clock synchronization, parameter settings

 Specific routing algorithms

 Location discovery, neighbor discovery 

 Group management (dormant, active-role assignment)

 Self-organization : backbone creation, leader election, collaboration 

to provide a service

 Power management :  turn-off of dormant nodes, periodical rotation 

of active nodes to balance energy

Networked Embedded Systems



Integration of Methods and Tools

57

SystemC                Matlab/Simulink      SDL UML 

AADL

VHDL        Lustre-Esterel     ADA              RT-Java

OSEK     ARINC       Ravenscar       JavaCard     Symbian      TinyOS

controller       DSP  FPGA     SoC     NoC

Autosar                         .NET         Jini          

Corba TTP        CAN     SafeBus         Bluetooth    WiFi

VxWorks              POSIX     WinCE

C      C++                                C#          Java

HW

OS

NW

MW

PR

MO
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Embedded Systems 

break with traditional Systems Engineering. They need new design 

techniques guaranteeing both functionality and quality (performance 

and dependability) and taking into account market constraints

are an opportunity for reinvigorating and extending Computer Science 

with new paradigms from Electrical Engineering and Control Theory. 

This requires basic research effort for meeting four challenges

 Combining analytic and computational models 

 Component-based construction of heterogeneous systems

 Constructivity at design time

 Adaptivity as a means for ensuring predictability

Discussion 

In addition to meeting the research challenges, the development of 

System Design as a Discipline requires formalization of the design 

process as a sequence of correct-by-construction component-based 

model transformations 
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THANK YOU


