
Teaching Agile Software Development Competences
The Agile Competence Pyramid

Martin Kropp

University of Applied Sciences

Northwestern Switzerland

Windisch, Switzerland

martin.kropp@fhnw.ch

Andreas Meier

Zurich University of Applied Sciences

Winterthur, Switzerland

andreas.meier@zhaw.ch

Abstract—Agile methodologies have come a long way over the

last decade. Several recent surveys [1], [2] show that agile

methodologies like Scrum, Extreme Programming and, more

recently, Kanban have successfully been adopted by many

companies to develop software. However, the same surveys show

that only few of the agile practices are used and even fewer are

applied consequently and thoroughly. This is to a great extent

due to the lack of skilled personnel. Although teaching agile

software development has drawn some attention in recent

research and has been discussed in several papers, we do not yet

seem to be able to “deliver” the appropriately skilled personnel.

What is the reason for this, and more importantly, how can we

improve the situation? In this position paper we propose a more

holistic approach for teaching agile software development, in

which the required agile practices and values are not only

integrated theoretically but also practically applied and repeated

until they become a habit to students and software engineers.

Index Terms—Agile, Software Development, Education

INTRODUCTION

Many IT-companies and -departments have adopted agile

software development. In the Swiss Agile Study [2], a survey

conducted by the authors, these findings have been confirmed.

More than half of the participating companies are using an

agile methodology – Agile has become mainstream!

Unfortunately, this also has a significant impact on the agile

team constitution. The early adopters of agile approaches were

all highly mature and technically skilled experts in their fields.

They had internalized the agile philosophy, were very

productive and produced high quality results. Today’s agile

teams, however, are “normal” software teams, with architects,

seniors and juniors in one team, and many of them are not yet

familiar with the agile philosophy. Even though those teams

have improved in software development to some extent, they

are far less productive than the early adopter expert teams.

Survey results show that quality has partially even gone down

and overall costs increased. One reason for this is that many of

the important agile practices are not applied as thoroughly [2]

as the agile pioneers proposed.

In this position paper we will analyze the situation on the

industry and education side in more detail to find out which

engineering and management skills are missing and propose

the “pyramid of agile competences” as a guideline to teach

these skills. We will suggest a holistic teaching approach,

which integrates the necessary agile skills and the core agile

values, into the education of agile software development.

THE STUDY

The study, conducted among almost 140 Swiss IT

companies and almost 200 IT professionals, clearly shows the

benefit of agile companies in much faster time-to-market;

better change responsiveness and much more satisfaction with

the process, as compared to traditional plan-driven companies.

On the other side, it also shows that there are some difficulties

in improving the quality and maintainability of software.

A look at the concrete practices applied, shows that typical

agile management practices like iteration planning, or time-

boxing are applied by most of the agile companies, while some

very important agile technical practices like Test-Driven-

Development (TDD), or Continuous Integration and continuous

quality control with metrics are still not standard in many

companies.

One reason for this could be that the developers just lack

the relevant competences and skills. These needed skills and

competences are discussed further in the following chapter.

THE AGILE COMPETENCE PYRAMID

The “pyramid of agile competences” in Figure 1 divides the

needed skills and competences into three major categories:

Mastering the technical skills or engineering practices,

builds the foundation for being able to develop high quality

software. These engineering practices are especially defined by

eXtreme Programming [6] and include best practices like unit

testing, clean coding [3], test-driven development [7],

collective code ownership, continuous integration and the like.

Engineering practices are mostly competences that refer to the

single individual.

On the second level come the agile management practices.

They define how agile projects are organized and run. Agile

management practices include iterative planning, short release

cycles, small releases, strong customer involvement and highly

interactive teams. Management practices are typically team

aspects, which require the appropriate social competences.

On top of these competences come the agile values, which

are articulated in the agile manifesto [4] and are based on

characteristics like mutual respect, openness, and courage.

Fig. 1. Pyramid of Agile Competences

The pyramid visualizes the decreasing number of required

skills from bottom to top. On the other hand, it reflects the

increasing difficulty to teach these skills. Engineering practices

can be taught very well in the classroom by lecturers and be

learned by the individuals at their own pace. Management

competences are, in our experience, best taught through

projects in teams. The most difficult competences to teach are

the agile values [4] on top of the pyramid, since they often

require a change in the attitude of the individual.

With the pyramid we also visualize the order in which the

different practice levels should be taught. Teaching software

engineers the management skills before they have a good

working knowledge of the underlying engineering skills is like

trying to build a pyramid from top to bottom. It might be

possible, but at a very high cost. (Unfortunately, many

companies are using this approach: They send their engineers

to a two day Scrum Master course and expect them to be agile

after that).

TEACHING AGILE SOFTWARE DEVELOPMENT

The authors are convinced that all agile competences and

competence levels have to be considered in an agile software

engineering curriculum in an integrated approach. That can

mean, that the different competences are taught in one single

software engineering course by applying the agile methodology

on a concrete case study in group work. This could however

also mean a complete agile software development curriculum,

which comprises various courses accompanied by a large one-

semester team project, where the taught competences are

directly applied. Especially the latter approach requires a strong

coordination of the different courses which is not easy with

lecturers who insist on their independence of teaching.

The authors have started to adapt their appropriate software

engineering courses in the mentioned directions and have made

first very positive experiences and received encouraging

feedback from the students.

A. A Bottom-up Teaching Approach

At UAS Northwestern Switzerland we have introduced the

course Software Construction in the second semester of the

undergraduate level (B.Sc,), which focuses on many of the XP

practices like unit testing, version control systems, automated

builds, continuous integration, continuous quality control,

refactoring and clean code [8]. These practices are applied in a

concrete one-semester case study in teams of three students.

Based on these engineering practices, the following module

Software Project Management, focuses on management

practices like iterative and incremental development, and

values like openness and interaction [9]. This course teaches

the agile management approach by applying a modified version

of the Scrum City game [10] in teams of six students.

The feedback from the students to both courses has been

very positive. They especially like the very practice oriented

approach provided by the case study and the game.

B. An Integrated Teaching Approach

In 2012, a Software Engineering course was taught at

Zurich University of Applied Sciences, which was designed to

give the students a good working knowledge of agile software

development. The course was a typical 16-week semester class

in the last year of the undergraduate level (B.Sc.). In this

course, the students applied agile engineering- and

management practices and special attention was paid to agile

values, i.e. it was designed with the pyramid of agile

competences in mind.

In Scrum teams of six to eight students, computer games

were developed while strengthening the students’ agile

software development skills. An evaluation shows that the

concept of this course was well received, and that participants

learned a great deal about agile methodologies while having

fun.

ACKNOWLEDGMENT

Many thanks go to the Swiss Hasler Foundation, which has

funded the Swiss Agile Study 2012 project, together with the

Swiss IT associations, swissICT, ICTnet and SWEN. The study

was the inspiration to these thoughts on teaching agile software

development competences.

REFERENCES

[1] Version One. State of Agile Development Survey results.
http://www.versionone.com/state_of_agile_development_survey
/11/, 20.10.2012

[2] Martin Kropp, Andreas Meier, Swiss Agile Study - Einsatz und
Nutzen von Agilen Methoden in der Schweiz. (German)
www.swissagilestudy.ch, 20.6.2013.

[3] Robert C. Martin, Clean Code: A Handbook of Agile Software
Craftsmanship, 2009, ISBN 0-13-235088-2

[4] Agile Manifesto. http://agilemanifesto.org/, 20.1.2013.

[5] Ken Schwaber, Mike Beedle. Agile Software Development with
Scrum, 2001, ISBN 0-13-207489-3

[6] Kent Beck, Extreme Programming Explained: Embrace Change.

Addison-Wesley, 2004 ISBN 0-321-27865-8

[7] Kent Beck, Test-Driven Development: By Example. Addison-
Wesley, 2003, ISBN 0-321-14653-0

[8] Ch. Denzler, M. Kropp. Software Construction.

http://web.fhnw.ch/plattformen/swc (German). 04.09.2013

[9] S. Hof, M. Kropp. Software Project Management.
http://web.fhnw.ch/plattformen/spm (German). 04.09.2013

[10] Scrum Lego City Game. Agile 42.

http://www.agile42.com/en/training/scrum-lego-city, 4.09.2013

http://www.versionone.com/state_of_agile_development_survey/11/
http://www.versionone.com/state_of_agile_development_survey/11/
http://www.swissagilestudy.ch/
http://agilemanifesto.org/
http://web.fhnw.ch/plattformen/swc
http://web.fhnw.ch/plattformen/spm

