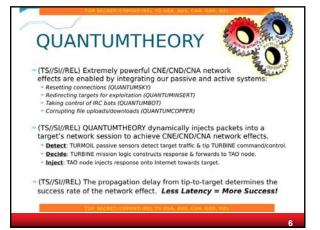
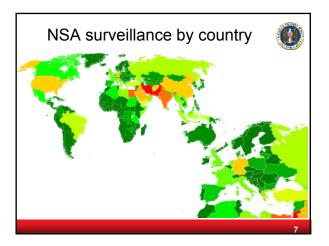


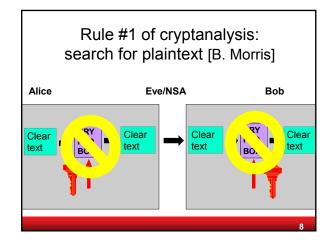
undermining cryptographic standards with backdoors (Bullrun) ... and also the credibility of NIST

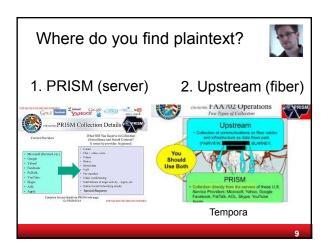
Snowden revelations (2)

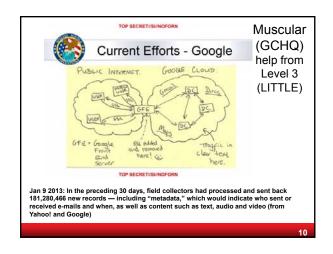


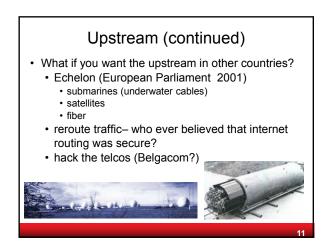
Most spectacular: active defense

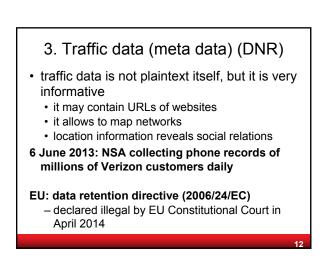

- networks
 - Quantum insertion: answer before the legitimate website
 - FoxAcid: specific malware
- devices
 - malware
- supply chain subversion

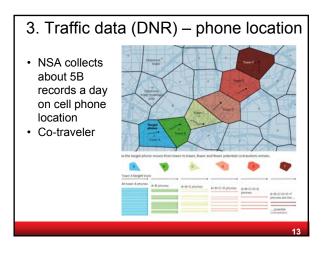

Translation in human terms: **complete control** of networks and systems, including bridging the air gaps

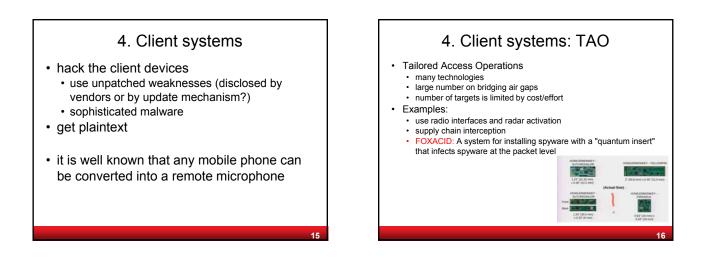

No longer deniable

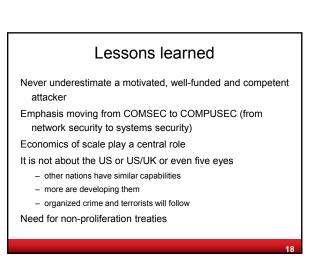


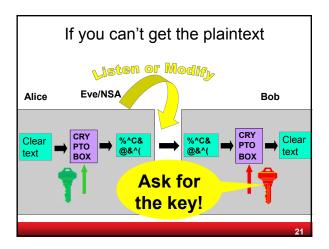

Cryptography and Information Security in the post-Snowden era Bart Preneel









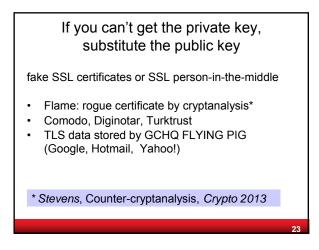


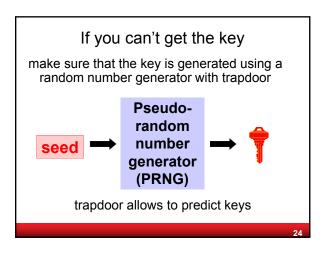
- · Snowden revelation: the essentials
- · Snowden revelations: some details
- Backdoors in crypto standard
- Impact on cryptology and information security research

NSA foils much internet encryption

NYT 6 September 2013

The National Security Agency is winning its longrunning secret war on **encryption**, using supercomputers, technical trickery, court orders and behind-the-scenes persuasion to undermine the major tools protecting the privacy of everyday communications in the Internet age




Asking for the key

- (alleged) examples
 - Lavabit email encryption
 - CryptoSeal Privacy VPN
 - SSL/TLS servers of large companies
 - Truecrypt?

This experience has taught me one very important lesson: without congressional action or a strong judicial precedent, I would **strongly** recommend against anyone trusting their private data to a company with physical ties to the United States.

Ladar Levison, Owner and Operator, Lavabit LLC

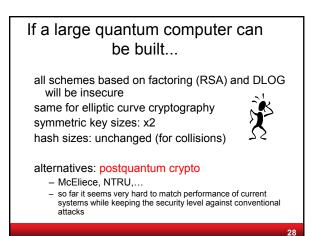
Dual_EC_DRBG Dual Elliptic Curve Deterministic Random Bit Generator

- ANSI and ISO standard
- 1 of the 4 PRNGs in NIST SP 800-90A • draft Dec. 2005; published 2006; revised 2012
- · Two "suspicious" parameters P and Q
- Many warnings and critical comments
 - before publication [Gjøsteen05], [Schoenmakers-Sidorenko06]
 - after publication [Ferguson-Shumov07]
- Appendix: The security of Dual_EC_DRBG requires that the points P and Q be properly generated. To avoid using potentially weak points, the points specified in Appendix A.1 should be used.

Dual_EC_DRBG

- NSA Bullrun program: NSA has been actively working to "Insert vulnerabilities into commercial encryption systems, IT systems, networks, and endpoint communications devices used by targets."
- 10 Sept. 2013, NYT: "internal memos leaked by a former NSA contractor suggest that the NSA generated one of the random number generators used in a 2006 NIST standard — called the Dual EC DRBG standard — which contains a backdoor for the NSA."
- 9 Sept. 2013: NIST "strongly recommends" against the use of dual_EC_DRBG, as specified in the January 2012 version of SP 800-90A.

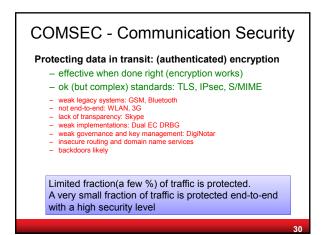
Why was the slowest and least secure of the 4 PRNGs chosen as the default algorithm in BSAFE?

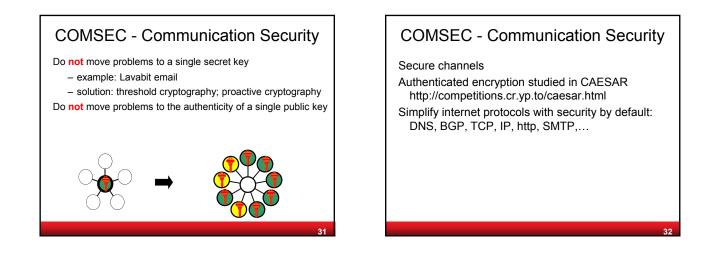

Cryptanalysis on Quantum Computers?

exponential parallelism

n coupled quantum bits 2^n degrees of freedom !

Shor 1994: perfect for factoring but: can a quantum computer be built?


2001: 7-bit quantum computer factors 15 2007: two new 7-bit quantum computers 2012: 143 has been factored



2012: 10 to 15 years for a large quantum computer

Quantum Computing: An IBM Perspective Steffen, M.; DiVincenzo, D. P.; Chow, J. M.; Theis, T. N.; Ketchen, M. B. The implementation of a functioning quantum computer poses tremendous scientific and technological challenges, but current rates of progress suggest that these challenges will be substantively addressed over the next ten years. We provide a sketch of a quantum computing system based on superconducting circuits, which are the current focus of our research. A realistic vision emerges concerning the form of a future scalable fault-tolerant quantum computer.

News in January 2014: NSA has spent 85 M\$ on building a quantum computer

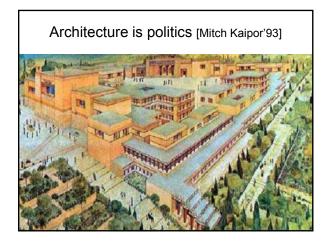
COMSEC - Communication Security meta data

Hiding communicating identities

- few solutions need more
- largest one is TOR with a few million users
- well managed but known limitations
 - + e.g. security limited if user and destination are in same country

Location privacy: problematic

22


COMPUSEC - Computer Security Protecting data at rest - well established solutions for local encryption: Bitlocker, Truecrypt - infrequently used in cloud - Achilles heel is key management

COMPUSEC - Computer Security

- Simplify to reduce attack surface
- Secure local computation
 - · with minimal trusted computing base
- with threshold security
- MPC, (F)HE, .. in practice
- hardware support: TPM, SMART, Sancus, SGX,...
- · Secure and open implementations
- · Community driven open audit

Reconsider every stage	
Crypto design	Kleptography
Hardware/software design	Hardware beekdoore
Hardware production	Hardware backdoors
Firmware/sw impl.	Software backdoors
Device assembly	Adding/modifying
Device shipping	hardware backdoors
Device configuration	Configuration errors
Device update	Backdoor insertion
	37

Governance and Architectures Governance and architectures Governments: want access for themselves but preclude this for others seems elusive with current state of the art Back to principles: minimum disclosure Industry: conflicting requirements - stop collecting massive amounts of data 1. government requirements for access and backdoors - if we do collect data: encrypt with key outside control 2. DRM for content and software of host 3. privacy of consumer Individual: cannot manage complex tradeoffs - with crypto still useful operations Bring "cryptomagic" to use without overselling - zero-knowledge, oblivious transfer, functional Need to rethink centralized architectures with massive encryption storage of raw data avoid single point of trust that becomes single point of failure - road pricing, smart metering, health care data minimization through infrastructure

IACR Copenhagen Declaration May 2014

The membership of the IACR repudiates mass surveillance and the undermining of cryptographic solutions and standards. Population-wide surveillance threatens democracy and human dignity. We call for expediting research and deployment of effective techniques to protect personal privacy against governmental and corporate overreach.

Conclusions

- Keep improving cryptographic algorithms, secure channels and meta-data protection
- Shift from network security to system security
- Rethink architectures
- Increase robustness against powerful opponents who can subvert many subsystems during several lifecycle stages
- Open technologies and review by open communities

7