
From Model-Driven Computer Science to
Data-Driven Computer Science and Back

Moshe Y. Vardi

Rice University

Is Computer Science Fundamentally Changing?

Formal Science vs Data Science

• Common perception: A Kuhnian paradigm shift!

– “Throw out the old, bring in the new!”

• In reality: new scientific theories refine old ones.

– After all, we went to the moon with Newtonian Mechanics!

• My Thesis: Data science refines formal science!

This Talk: Two personal examples: database query languages, Boolean
satisfiability solving

1

Database Query Languages

Basic Framework Codd, 1970:

• Fixed Schema: e.g., EMP-DPT, DPT-MGR

• Standard database query languages (e.g., SQL 2.0) are essentially
syntactically sugared 1st-order logic (FOL).

Beyond FOL:

• Aho&Ullman, 1979: 1st-order languages are weak – add recursion

• Gallaire&Minker,1978: add recursion via logic programs

• SQL 3.0, 1999: recursion added

2

Datalog

Datalog [Maier&Warren, 1988]:

• Function-free logic programs
• Select-project-join-union-recurse queries

Example: Transitive Closure

Path(x, y) : − Edge(x, y)

Path(x, y) : − Path(x, z), Path(z, y)

Example: Impressionable Shopper

Buys(x, y) : − Trendy(x), Buys(z, y)

Buys(x, y) : − Likes(x, y)

3

Query Containment, I

Query Optimization: Given Q, find Q′ such that:

• Q ≡ Q′

• Q′ is “easier” than Q

Query Containment: Q1 v Q2 if Q1(B) ⊆ Q2(B) for all databases B.

Fact: Q ≡ Q′ iff Q v Q′ and Q′ v Q

Consequence: Query containment is a key database problem.

4

Query Containment, II

Decidability of Query Containment:

• SQL: undecidable
– Folk Theorem (unsolvability of FO)
– Poor theory and practice of optimization

• SPJU Queries: decidable
– Chandra&Merlin, 1977, Sagiv&Yannakakis,- 1982
– Rich theory and practice of optimization

Select-Project-Join-Union Queries:

• Covers the vast majority of real-life database queries

Example: Triangle(x, y) : − Edge1(x, y), Edge1(y, z), Edge(z, x)
Triangle(x, y) : − Edge2(x, y), Edge2(y, z), Edge2(z, x)

5

Query Containment, III

Datalog Containment:

• Complexity: undecidable
– Shmueli, 1987: easy reduction from CFG containment

• Difficult theory and practice of optimization

Unfortunately, most decision problems involving Datalog are undecidable
- very few interesting, well-behaved fragments.

Reminder: Datalog=SPJU+Recursion

Question: Can we limit recursion to recover decidability?

6

1990s: Graph Databases

WWW: Nodes, Edges Labels

Graph Data: WWW, SGML documents, library catalogs, XML documents,
meta-data,

Graph Databases: No fixed Schema – (D,E, λ)

• D - nodes
• E ⊆ D2 - edges
• λ : E → Λ – edge labels (more general than node labels)

7

Figure 1: Graph Database 8

Path Queries

Active Research Topic: What is the right query language for graph
databases? (“No SQL”)

Basic Element of all proposals: path queries

• Q(x, y) : − x L y
• L: formal language over labels
• a· l1 · · · lk ·b
• Q(a, b) holds if l1 · · · lk ∈ L

Example: Regular Path Query

Q(x, y) : − x (Wing · Part+ ·Nut) y

9

Regular Path Queries

Observation:

• A fragment of binary Datalog
– Concatenation: E(x, y) : − E1(x, z), E2(z, y)
– Union: E(x, y) : − E1(x, y)

E(x, y) : − E2(x, y)
– Transitive Closure: P (x, y) : − E(x, y)

P (x, y) : − E(x, z), E(z, y)

10

Path-Query Containment

Q1(x, y) : − x L1 y, Q2(x, y) : − x L2 y

Language-Theoretic Lemma 1:

Q1 v Q2 iff L1 ⊆ L2

Proof: Consider a database

a· l1 · · · lk ·b with l1 · · · lk ∈ L1

Corollary: Path-Query Containment is

• undecidable for context-free path queries
• PSPACE-complete for regular path queries.

11

Two-Way RPQs

Extended Alphabet: Λ− = {a− : a ∈ Λ}, Λ′ = Λ ∪ Λ−

Inverse Roles:

Part(x, y): y part of x
Part−(x, y): x part of y

Example: (1/2)∗ Siblings

Q(x, y) : −
x [(father− · father) + (mother− ·mother)]+ y

[Calvanese-De Giacomo-Lenzerini-V., 2000]: 2RPQ containment is
PSPACE-complete.

12

Closing 2RPQs under ∩ and ∪

Intersection:

• Regular languages are closed under intersection and union.
• Intersection adds succinctness: RE(∩)<RE

Intersection vs. Conjunction:
Q1(x, y) : −(x(E1 ∩ E2)y)
Q2(x, y) : −(xE1y)&(xE2y)

Conclusion: Intersection6=Conjunction for graph databases!

UC2RPQ: Closure of 2RPQs under union and conjunction

13

UC2RPQ

UC2RPQ: Core of all graph query languages

Q(x1, . . . , xn) : − y1E1z1, . . . , ymEmzm

• Ei – UC2RPQ

Intuition:

• UC2RPQs are obtained from SPJU by replacing atoms with REs over Λ′.
• UC2RPQs are Select-Project-Union-“Regular Join” queries.

Example:

Q(x, y) : − z (Wing · Part+ ·Nut) x,
z (Wing · Part+ ·Nut) y

14

UC2RPQ Containment

Difficulty: Earlier techniques do not apply

• Database techniques cannot handle transitive closure.
• No language-theoretic lemma to reduce to automata.

Solution: combine database-theoretic and automata-theoretic techniques:

[Calvanese-De Giacomo-V., 2000&2003]: UC2RPQ containment is
EXPSPACE-complete.

15

Regular Queries

UC2RPQs:

• Elements: disjunction, conjunction, and transitive closure
• Closure: disjunction, conjunction

Example: Not in UC2RPQ!
Q(x, y) : −(xE1z)&(zE2y)&(xE3y)
Answe(x, y) : −(xQ∗y)

RQ: closure under disjunction, conjunction, and transitive closure (TC)
Essentially: Replace recursion by TC.

RQ Containment: 2EXPSPACE-complete [Reutter&Romero&V., 2015]

Question: Practical?

16

Boole’s Symbolic Logic

Boole’s insight: Aristotle’s syllogisms are about classes of objects, which
can be treated algebraically.

“If an adjective, as ‘good’, is employed as a term of description, let us
represent by a letter, as y, all things to which the description ‘good’
is applicable, i.e., ‘all good things’, or the class of ‘good things’. Let
it further be agreed that by the combination xy shall be represented
that class of things to which the name or description represented by
x and y are simultaneously applicable. Thus, if x alone stands for
‘white’ things and y for ‘sheep’, let xy stand for ‘white sheep’.

17

Boolean Satisfiability

Boolean Satisfiability (SAT); Given a Boolean expression, using “and”
(∧) “or”, (∨) and “not” (¬), is there a satisfying solution (an assignment
of 0’s and 1’s to the variables that makes the expression equal 1)?

Example:

(¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧ (x3 ∨ x1 ∨ x4)

Solution: x1 = 0, x2 = 0, x3 = 1, x4 = 1

18

Complexity of Boolean Reasoning

History:

• William Stanley Jevons, 1835-1882: “I have given much attention,
therefore, to lessening both the manual and mental labour of the process,
and I shall describe several devices which may be adopted for saving trouble
and risk of mistake.”

• Ernst Schröder, 1841-1902: “Getting a handle on the consequences
of any premises, or at least the fastest method for obtaining these
consequences, seems to me to be one of the noblest, if not the ultimate
goal of mathematics and logic.”

• Cook, 1971, Levin, 1973: Boolean Satisfiability is NP-complete.

19

Algorithmic Boolean Reasoning: Early History

• Newell, Shaw, and Simon, 1955: “Logic Theorist”

• Davis and Putnam, 1958: “Computational Methods in The
Propositional calculus”, unpublished report to the NSA

• Davis and Putnam, JACM 1960: “A Computing procedure for
quantification theory”

• Davis, Logemman, and Loveland, CACM 1962: “A machine program
for theorem proving”

DPLL Method: Propositional Satisfiability Test

• Convert formula to conjunctive normal form (CNF)

• Backtracking search for satisfying truth assignment

• Unit-clause preference

20

Modern SAT Solving

CDCL = conflict-driven clause learning

• Backjumping

• Smart unit-clause preference

• Conflict-driven clause learning

• Smart choice heuristic (brainiac vs speed demon)

• Restarts

Key Tools: GRASP, 1996; Chaff, 2001

Current capacity: millions of variables

21

S. A. Seshia 1

Some Experience with SAT Solving
Sanjit A. Seshia

Speed-up of 2012 solver over other solvers

1

10

100

1,000

Solver

S
p

e
e

d
-u

p
 (

lo
g

 s
c

a
le

)

Figure 2: SAT Solvers Performance
%labelfigure

22

Applications of SAT Solving in SW Engineering

Leonardo De Moura+Nikolaj Björner, 2012: applications of Z3 at Microsoft

• Symbolic execution

• Model checking

• Static analysis

• Model-based design

• . . .

23

Verification of HW/SW systems

HW/SW Industry: $0.75T per year!

Major Industrial Problem: Functional Verification – ensuring that
computing systems satisfy their intended functionality

• Verification consumes the majority of the development effort!

Two Major Approaches:

• Formal Verification: Constructing mathematical models of systems
under verification and analzying them mathematically: ≤ 10% of verification
effort

• Dynamic Verification: simulating systems under different testing
scenarios and checking the results: ≥ 90% of verification effort

24

Dynamic Verification

• Dominant approach!

• Design is simulated with input test vectors.

• Test vectors represent different verification scenarios.

• Results compared to intended results.

• Challenge: Exceedingly large test space!

25

Motivating Example: HW FP Divider

z = x/y: x, y, z are 128-bit floating-point numbers

Question How do we verify that circuit works correctly?

• Try for all values of x and y?

• 2256 possibilities

• Sun will go nova before done! Not scalable!

26

Test Generation

Classical Approach: manual test generation - capture intuition about
problematic input areas

• Verifier can write about 20 test cases per day: not scalable!

Modern Approach: random-constrained test generation

• Verifier writes constraints describing problematic inputs areas (based
on designer intuition, past bug reports, etc.)

• Uses constraint solver to solve constraints, and uses solutions as test
inputs – rely on industrial-strength constraint solvers!

• Proposed by Lichtenstein+Malka+Aharon, 1994: de-facto industry
standard today!

27

Random Solutions

Major Question: How do we generate solutions randomly and
uniformly?

• Randomly: We should not rely on solver internals to chose input vectors;
we do not know where the errors are!

• Uniformly: We should not prefer one area of the solution space to
another; we do not know where the errors are!

Uniform Generation of SAT Solutions: Given a SAT formula, generate
solutions uniformly at random, while scaling to industrial-size problems.

28

Constrained Sampling: Applications

Many Applications:

• Constrained-random Test Generation: discussed above

• Personalized Learning: automated problem generation

• Search-Based Optimization: generate random points of the candidate
space

• Probabilistic Inference: Sample after conditioning

• . . .

29

Constrained Sampling – Prior Approaches, I

Theory:

• Jerrum+Valiant+Vazirani: Random generation of combinatorial
structures from a uniform distribution, TCS 1986 – uniform generation
in BPPΣ

p
2

• Bellare+Goldreich+Petrank: Uniform generation of NP -witnesses
using an NP -oracle, 2000 – uniform generation in BPPNP .

But: We implemented the BPG Algorithm: did not scale above 16 variables!

30

Constrained Sampling – Prior Work, II

Practice:

• BDD-based: Yuan, Aziz, Pixley, Albin: Simplifying Boolean constraint
solving for random simulation-vector generation, 2004 – poor scalability

• Heuristics approaches: MCMC-based, randomized solvers, etc. – good
scalability, poor uniformity

31

Almost Uniform Generation of Solutions

New Algorithm – UniGen: Chakraborty, Fremont, Meel, Seshia, V,
2013-15:

• almost uniform generation in BPPNP (randomized polynomial time
algorithms with a SAT oracle)

• Based on universal hashing.

• Uses an SMT solver.

• Scales to 100,000s of variables.

32

Uniformity vs Almost-Uniformity

• Input formula: ϕ; Solution space: Sol(ϕ)

• Solution-space size: κ = |Sol(ϕ)|

• Uniform generation: for every assignment y: Prob[Output = y]=1/κ

• Almost-Uniform Generation: for every assignment y:
(1/κ)
(1+ε) ≤ Prob[Output = y] ≤ (1/κ)× (1 + ε)

33

The Basic Idea

1. Partition Sol(ϕ) into “roughly” equal small cells of appropriate size.

2. Choose a random cell.

3. Choose at random a solution in that cell.

You got random solution almost uniformly!

Question: How can we partition Sol(ϕ) into “roughly” equal small cells
without knowing the distribution of solutions?

Answer: Universal Hashing [Carter-Wegman 1979, Sipser 1983]

34

Universal Hashing

Hash function: maps {0, 1}n to {0, 1}m

• Random inputs: All cells are roughly equal (in expectation)

Universal family of hash functions: Choose hash function randomly from
family

• For arbitrary distribution on inputs: All cells are roughly equal (in
expectation)

35

XOR-Based Universal Hashing

• Partition {0, 1}n into 2m cells.

• Variables: X1, X2, . . . Xn

• Pick every variable with probability 1/2, XOR them, and equate to 0/1
with probability 1/2.

– E.g.: X1 + X7 + . . . + X117 = 0 (splits solution space in half)

• m XOR equations ⇒ 2m cells

• Cell constraint: a conjunction of CNF and XOR clauses

36

SMT: Satisfiability Modulo Theory

SMT Solving: Solve Boolean combinations of constraints in an underlying
theory, e.g., linear constraints, combining SAT techniques and domain-
specific techniques.

• Tremendous progress since 2000!

CryptoMiniSAT: M. Soos, 2009

• Specialized for combinations of CNF and XORs

• Combine SAT solving with Gaussian elimination

37

UniGen Performance: Uniformity

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 160 180 200 220 240 260 280 300 320

#
 o

f
S
o
lu

ti
o
n
s

Count

US
UniGen

Uniformity Comparison: UniGen vs Uniform Sampler

38

UniGen Performance: Runtime

0.1	

1	

10	

100	

1000	

10000	

100000	

ca
se
47
	

ca
se
_3

_b
14

_3
	

ca
se
10

5	

ca
se
8	

ca
se
20

3	

ca
se
14

5	

ca
se
61

	

ca
se
9	

ca
se
15

	

ca
se
14

0	

ca
se
_2

_b
14

_1
	

ca
se
_3

_b
14

_1
	

sq
ua

rin
g1

4	

sq
ua

rin
g7
	

ca
se
_2

_p
tb
_1

	

ca
se
_1

_p
tb
_1

	

ca
se
_2

_b
14

_2
	

ca
se
_3

_b
14

_2
	

Time(s)	

Benchmarks	

UniGen	

XORSample'	

Runtime Comparison: UniGen vs XORSample’

39

Are NP-Complete Problems Really Hard?

• When I was a graduate student, SAT was a “scary” problem, not to be
touched with a 10-foot pole.

• Indeed, there are SAT instances with a few hundred variables that cannot
be solved by any extant SAT solver.

• But today’s SAT solvers, which enjoy wide industrial usage, routinely
solve real-life SAT instances with millions of variables!

Conclusion We need a richer and broader complexity theory, a theory that
would explain both the difficulty and the easiness of problems like SAT.

Question: Now that SAT is “easy” in practice, how can we leverage that?

• If not worst-case complexity, then what?

40

From Model-Driven Computer Science to Data-Driven
Computer Science and Back

In Summary:

• It is a paradigm glide, not paradigm shift.

• Data-driven CS refines model-driven CS, it does not replace it.

• Physicists still teach Mechanics, Electromagnetism, and Optics.

• We should still teach Algorithms, Logic, and Formal Languages.

41

