POSITIONING COMPUTER SCIENCE IN A UNIVERSITY -RESEARCH PERSPECTIVE VERSUS MANAGEMENT PERSPECTIVE

Gabriele Anderst-Kotsis

Johannes Kepler University Linz, Austria

Computer Science in the Scientific Landscape

- Classification of disciplines
- Research staff
- Research output

Computer Science at (Austrian) Universities

- Contributions to objectives and key performance indicators
- Organisational structures
- Expectations

University Management and Computer Science

- Involvement of computer scientists in management positions
- (How) should we manage (computer) scientists?
- Expectations

Impact of/on Interdisciplinary Work

- Mutual understanding
- Joint Projects
- Academic careers in interdisciplinary fields

Classification of Disciplines

■ Science Theory

European Union

■ Worldwide Academic Organisations

Statistik Austria

■ Classification of Disciplines (ÖFOS 2002 versus 2012)

Code	Element
▼ 1	NATURWISSENSCHAFTEN
▶ 101	Mathematik
▶ 102	Informatik
▶ 103	Physik, Astronomie
▶ 104	Chemie
▶ 105	Geowissenschaften
▶ 106	Biologie
▶ 107	Andere Naturwissenschaften
▶ 2	TECHNISCHE WISSENSCHAFTEN
▶ 3	HUMANMEDIZIN, GESUNDHEITSWISSENSCHAFTEN
▶ 4	AGRARWISSENSCHAFTEN, VETERINÄRMEDIZIN
▶ 5	SOZIALWISSENSCHAFTEN
▶ 6	GEISTESWISSENSCHAFTEN

Version 4.1.3 | © STATISTIK AUSTRIA

■ Research Staff: 4.5% in Computer Science Austrian wide

Wissensbilanz der Österreichischen Universitäten 2015

■ Research Output: 4.5% in Computer Science Austrian wide

Wissensbilanz der Österreichischen Universitäten 2015

■ A variety of views on "Informatics"

- □ Applied Mathematics
- \Box Engineering Science
- □ Interdisciplinary Research versus new Scientific disciplines
- □ Information Technology
- \Box Office Programs
- \Box Its the future, but not mine (young girl at career fair)

- Contributions to objectives & KPIs
- Organisational structures
- Expectations

Objectives of an University

§ 1. Die Universitäten sind berufen, der wissenschaftlichen Forschung und Lehre, der Entwicklung und der Erschließung der Künste sowie der Lehre der Kunst zu dienen … verantwortlich zur Lösung der Probleme des Menschen sowie zur gedeihlichen Entwicklung der Gesellschaft und der natürlichen Umwelt beizutragen. … in Forschung und in forschungsgeleiteter akademischer Lehre auf die Hervorbringung neuer wissenschaftlicher Erkenntnisse sowie auf die Erschließung neuer Zugänge zu den Künsten ausgerichtet … Streben nach Bildung und Autonomie des Individuums durch Wissenschaft … Förderung des wissenschaftlichen Nachwuchses … Bewältigung der gesellschaftlichen Herausforderungen … in größtmöglicher Autonomie und Selbstverwaltung.

UG 2002

Performance Indicators

- Try to measure and quantify the achievements (against the objectives?) of an institutions
 - □ Rankings (U-Multirank)
 - □ University Reporting Systems (JKU Fodok, Wissensbilanz)
- Can be used to allocate budget to organisational units
 - □ Within the University
 - □ In Austria "formelgebundenes Budget"
- Is it possible to quantify the contribution of individual disciplines?
- Is interdisciplinary work reflected or considered?

■ Performance Indicators – U-Multirank

- Categories
 - $\hfill\square$ Teaching and Learning
 - \Box Research
 - □ Knowledge Transfer
 - □ International Orientation
 - □ Regional Engagement

One indicator are Interdisciplinary publications

■ Performance Indicators – U-Multirank

■ Allows to drill down for individual subjects

U-Multirank 2016

Performance Indicators – JKU Fodok

Aufsatz / Paper in Tagungsband (referiert)

Performance Comparison of Information Encoding in Droplet-based Microfluidic Systems

Haselmayr W., Wirth C., Buchberger A., Springer A.: Performance Comparison of Information Encoding in Droplet-based Microfluidic Systems, in: Proceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication, Page(s) 37:1--37:2, 2016.

Details

Buchtitel: Proceedings of the 3rd ACM International Conference on Nanoscale Computing and Communication Erscheinungsjahr: 2016 Seitenreferenz: 37:1–-37:2 Anzahl Seiten: 2 Web: http://doi.acm.org/10.1145/2967446.2967483 DOI: http://dx.doi.org/10.1145/2967446.2967483 Verlagsanschrift: USA, New York ISBN: 978–1–4503–4061–8 Reichweite: International

Beteiligte

Autorinnen / Herausgeberinnen: Assist.-Prof. DI Dr. Werner Haselmayr, DI Christian Wirth, Andreas Buchberger, Univ.-Prof. DI Dr. Andreas Springer

Forschungseinheiten:

100.0% Institut für Nachrichtentechnik und Hochfrequenzsysteme

Wissenschaftszweige: 202030 Nachrichtentechnik | 202037 Signalverarbeitung | 202038 Telekommunikation

www.jku.at/fodok

BibTeX

erformance Indicators - Wissensbilanz		Anzahl der Publikationen		
Wissenschaftszweige (It. Statistik Austria)	2015	2014	2013	
▼ 1 NATURWISSENSCHAFTEN	742.4	742.4	778.6	
11 Mathematik, Informatik	0.0	0.0	492.6	
12 Physik, Mechanik, Astronomie	0.0	0.0	144.7	
13 Chemie	0.0	0.0	116.5	
<u>14 Biologie, Botanik, Zoologie</u>	0.0	0.0	18.3	
15 Geologie, Mineralogie	0.0	0.0	0.0	
16 Meteorologie, Klimatologie	0.0	0.0	0.0	
17 Hydrologie, Hydrographie	0.0	0.0	0.0	
18 Geographie	0.0	0.0	0.0	
19 Sonstige und interdisziplinäre Naturwissenschaften	0.0	0.0	6.4	
<u>101 Mathematik</u>	207.0	222.0	0.0	
102 Informatik	318.8	266.6	0.0	
103 Physik, Astronomie	114.2	144.6	0.0	
104 Chemie	68.0	86.8	0.0	
105 Geowissenschaften	2.9	2.3	0.0	
106 Biologie	30.7	18.2	0.0	
107 Andere Naturwissenschaften	0.8	1.9	0.0	

JKU Wissensbilanz 2015

Performance Indicators

Wissensbilanz der Österreichischen Universitäten 2015

Performance Indicators:

□ 80 Active Students per Prof (FTE)

- $\hfill\square$ 4.6% of student subscriptions in CS
- $\hfill\square$ 3.6% of active students in CS

 $\hfill\square$ 3.75% of Completed studies

Wissensbilanz der Österreichischen Universitäten 2015

Performance Indicators

Wissensbilanz der Österreichischen Universitäten 2015

J⊻U

Organisational Structures

- $\hfill\square$ "CS only" units
 - School of Computer Science, Fakultät für Informatik, Fachbereich Informatik
- □ Embedded into larger structures
 - Department(s) of Computer Science (or even more specific identifiers for professor positions) as sub-units of schools or other organisational units
- □ Matrix-oriented Structures trying to combine the advantages of both (and bearing the risk of adding the disadvantages of both)

■ Example JKU

■ JKU | Informatik: The largest field of teaching @ TNF

- \Box ~ 1800 Students (Bakk, Master, PhD)
- $\Box\,$ ~ 370 different courses / year
- \Box ~ 7000 exams / year
- $\hfill\square$ largest number of outgoing students of the TNF

Example JKU

■ JKU | Informatik: Research Funding

- \Box 5.8 Million EUR external research funding p.a.
- □ EU Projects
- □ 2 CD Labs
- \Box 1 NFN
- □ FWF projects
- □ FFG projects
- □ Wittgenstein award
- □ ERC Grant

Example: JKU

Expectations

- Comparatively large number of students per professor for technical subject, but lower number of "active" students
- Need for better integration of working students
- Specific scientific culture should be better reflected in KPIs
- Interdisciplinary work should be more visible, e.g. included in KPIs

- Involvement of computer scientists in academic management positions
- (How) should we manage (computer) scientists?
- Expectations

Involvement of computer scientists in management positions

Web sites of & Austrian Universities (JKU Linz, TU Graz, TU Vienna, Uni Innsbruck, Uni Klagenfurt, Uni Salzburg, Uni Vienna, WU Vienna)

■ Involvement of computer scientists in management positions

Web sites of & Austrian Universities (JKU Linz, TU Graz, TU Vienna, Uni Innsbruck, Uni Klagenfurt, Uni Salzburg, Uni Vienna, WU Vienna)

Expectations

- CS rather seen for its merits in research than in teaching
- CS Departments strong in acquisition of third party funding without requiring large investments in infrastructure
- Other disciplines reluctant to vote for a computer scientist?

- (How) should we manage (computer) scientists?
- Computer scientists know what's technically feasible / useful, we do not accept a "that's impossible"
- We are addicted to obtaining and processing information
- Keep intrinsic motivation at a high level

- Mutual understanding
- Joint Projects
- Academic careers in interdisciplinary fields

Mutual understanding

- Engage in University-wide management functions to learn about the specific characteristics and need of other disciplines
- Dedicate time to listening to talks beyond the own subject
- Create an atmosphere for social interaction across disciplines

■ Joint Projects

■ Difficulties in evaluating interdisciplinary work

- □ Finding appropriate reviewers
- □ Lack of accepted criteria in comparing the merits with other projects / disciplines

FØDØK JKU

- Academic careers in interdisciplinary fields
- Each discipline has specific criteria and requirements, interdisciplinary work must meet them all
 - Possible for joint projects, but difficult in evaluations of individuals
- Many steps in the scientific career depend highly on the embedding into one specific discipline (PhD, Habilitation, ...)

CONCLUSIONS

There seems to be an agreement on the value and importance of interdisciplinary work, but there is a lack of mechanisms, indicators, incentives or rewards to promote it!