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Quantum Computing as the technology for simulating quantum systems

Spectacular Progress

from complexity theory to cryptography
from simulation to sampling
from tomography to implementation
from foundation to interpretation
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Quantum Era

National Investments

Europe 1bn€

UK 270M £
Netherlands 80M $
China Billions !

US, Singapore,Canada
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Can we BOOTSTRAP a smaller quantum device to test a bigger one?
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Quantum Verification

Efficient verification methods for realistic quantum devices
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- Correctness of the outcome : : Non-universal:

- Operation monitoring - Architectural constraints D-Wave machine

- Quantum property testing - Experimental imperfections Quantum Simulator
Current Q2020 architecture

Goal

Criteria to test emerging quantum devices
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A mechanism that prob of withess is acc and outcome is bad is bounded

Verifier . Prover/Device/Eve/Noise

vV ) EEEETETEE >
random parameters

Abort/Acc © B(v)

density operator of classical and quantum output
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How to deal with deviation

(0 000) T (Pt B) < €)

(2

Different toolkits / Different tasks / Different witness /
Different properties / Different assumptions / .....

Hypothesis Test, Certification, Self Testing, Entanglement detection,
Quantum signature, Proof System, Hardware Testing, Post-hoc verification,
Randomised benchmarking, Authentication, Blind Verification




Most General Deviation

QEve,system

Quantum Hiding




Most General Deviation

QEve,system

Quantum Hiding

Otestsubspace




Most General Deviation

QEve,system

Quantum Hiding

Otestsubspace

Practical Protocols with No assumptions whatsoever



Most General Deviation

QEve,system

Quantum Hiding Classically
Impossible

Otestsubspace

Practical Protocols with No assumptions whatsoever
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Entrapping Nature

Untrusted Relativistic Quantum Theory

Falsifiable via

Trusted Wave Packet
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via Hiding : Cloud-based Crypto App  Distributed Network
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via Hiding : Cloud-based Crypto App  Distributed Network

Verifier
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via Hiding : Cloud-based Crypto App  Distributed Network

- EPSRC UK

- NRF Singapore
- USAirforce
- EU QFlagship

via Proof System : Quantum Simulation

- Number Crunching

- Noise Handling
- Architecture Adaptation
- New Methods Development

via Hypothesis Testing : Bench Marking Quantum Supremacy
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Trust Worthy Quantum Information TyQi17 Paris

- The overhead depends on the level of trust

Entanglement

Semi-trusted

Trusted (iid) Untrusted
Measurements o
Trusted O(N) O(N*logN) | O(N*3log(N))
Untrusted O(N*logN) | O(N*logN) | O(N®%)




Verification Status

- It exists
- It is expanding

arXiv:1709.06984

Verification of quantum computation:
An overview of existing approaches

Alexandru Gheorghiu, Theodoros Kapourniotis, Elham Kashefi

Entanglement

Semi-trusted
Trusted Untrusted

Measurements (i-i.d.)
Trusted O(N) O(N*logN) | O(N*3log(N))
Untrusted O(N*logN) | O(N*logN) | O(N®%)
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- uniform platform versus tailored made

Standardisation 7?7 Given the unknown nature of the emerging devices

- Academic versus Industry’s need

??? Objective improvements
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Do we need to wait till error correcting codes became feasible



Classical - Quantum Collaboration Landscape

Efficient Certification

Cyber Security

Enhanced-Security
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Quantum Cryptography

Protocols for hybrid classical-quantum communication network

/

- Electronic voting

- Fingerprinting

- Digital currency

- Secure cloud

- Blockchain

- Secure multi-party computing
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- Practical Security Analysis

- Standard telecom technology
- Long distance

- Long term stability

- Silicon-integrated

- Small scale devices




Quantum Crypto Status



Quantum Crypto Status

- It exists
- It is expanding

Quantum Cryptography QCrypt17 Cambridge




Quantum Crypto Status

- It exists
- It is expanding

Quantum Cryptography QCrypt17 Cambridge

- Quantum Protocols for Quantum Webs

- Q Fingerprinting

- Q Money

- Q Secure cloud

- Q Byzantine Agreement

- Q Secure multi-party computing




Quantum Crypto Status

- It exists
- It is expanding

Quantum Cryptography QCrypt17 Cambridge

- Quantum Protocols for Quantum Webs

- Q Fingerprinting

- Q Money

- Q Secure cloud

- Q Byzantine Agreement

- Q Secure multi-party computing

They need few qubits .... works with noisy one too
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Quantum Crypto Challenge

How to exploit them for Classical Web ?

- Academic versus Industry’s need

Objective improvements
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Practical Classical SMPC

First large-scale practical experiment with SMPC to implement a secure auction 08

Recently: Efficient (low communication) computational SMPC

Computation represented by a series of additions and multiplications of elements in Fp.

easy 15m PM fibre
Half waveplates: plﬁf <1
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The Edinburgh-Paris Team Luka Music
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A girl simple dream

Global Verifiable Secure Quantum Web




