

Private

Public

DESIGN FORCES

High-school credit

COMPUTING FOR <u>ALL</u>

Brown CS

CS is the #1 major at Brown 25% bigger than next biggest major Approximately 12% of university

Without sacrificing rigor! About 40% to Google; MS, Fb, ...

What About the Rest?

Several strategies for rest of campus

Easy way: Make it (meet) a <u>requirement</u>

Hard way: Everything else!

<u>Bootstrap</u>: Computational Modeling in Algebra, Physics, and Data Science for all students

One of the largest CS outreach programs Part of White House's CS4All program

CURRICULUM DESIGN IS AN ENGINEERING PROBLEM

What are your design constraints?

Diversity

Race Gender SES 1 Gen

• • •

Diversity

Diversity

Brown CS

CSCI0020	(CS002)	The Digital World
CSCI0030	(CSCI0931)	Introduction to Computation for the Humanities and Social Sciences
CSCI0040	(CS004)	Introduction to Scientific Computing and Problem Solving
CSCI0050		A Data-Centric Introduction to Programming
CSCI0080		A First Byte of Computer Science
CSCI0090-A	(CS009-3)	Building a Web Application
CSCI0090-B	(CS009-1)	Computers and Human Values
CSCI0090-C	(CS009-2)	Talking with Computers
CSCI0100		Data Fluency for All

Bootstrap

Incorporate into required school courses (Algebra, Social Studies, Science) with <u>measured</u> transfer

Three month-long projects Problems taken from target subjects A month of Excel! Final output is a report, not program SIGCSE 2018 Tutorial

Saturday 2-5pm

From Spreadsheets to Programs: Reconciling Data Science and CS1

Politz, Fisler, Krishnamurthi, Lerner

THE IMMATURITY OF CS ED

Where is the science for curriculum engineering?

Diction

Our diction is still stuck with <u>languages</u>

"We teach Java" "We teach Python"

Not always necessary; certainly not sufficient

Principles vs. Platforms

A computing platform (Arduino, drone, ...):

- represents itself
- represents something bigger than itself

Failing to articulate <u>learning objectives</u> means we conflate them (and skip the latter)

Continuity

Later classes don't pick up on earlier ones How many of your faculty <u>really know</u> what is taught in the intro class? How many care?

Early faculty don't want to know what is in later classes

"Let me teach Haskell and leave me alone!"

New Challenges

Where are

- embedded computing
- distributed computing
- data science?

Each has <u>fundamentally</u> new requirements Can't just keep doing **for** loops (or objects)

Pressure from Below

Students increasingly come to college with quite sophisticated backgrounds

Need to remove them from the general student pool

Worse, words ≠ knowledge

Pushing Downward

What is your CS-in-schools initiative?

Do you treat it as more than a hobby?

What are <u>its</u> design criteria? (Diversity, rigor, scale?)

Plagiarism

A problem from a certification perspective

It's really a mechanism design problem

Our successful approach so far: Peer review

Running in Place

Enrollment challenges means

- no time to innovate
- no need to attract new students
- resources are spread thin
- student quality is variable
- difficult to maintain authenticity

yet the opportunities are greater than ever