John Shawe-Taylor

Department of Computer Science University College London

ECSS, Gothenburg, 2018

• Give a personal perspective on the recent progress and resultant buzz around artificial intelligence

• • • • • • •

- Give a personal perspective on the recent progress and resultant buzz around artificial intelligence
- Throw light on the place of machine learning in these developments

伺 ト イヨ ト イヨト

- Give a personal perspective on the recent progress and resultant buzz around artificial intelligence
- Throw light on the place of machine learning in these developments
- Highlight the leading role that Europe has played

伺 ト イヨ ト イヨト

- Give a personal perspective on the recent progress and resultant buzz around artificial intelligence
- Throw light on the place of machine learning in these developments
- Highlight the leading role that Europe has played
- Suggest promising directions for further attention

• • = • • = •

• Machine Learning seeks patterns in data: based on probabilistic analysis rather than logical inference

4 E 5 4

- Machine Learning seeks patterns in data: based on probabilistic analysis rather than logical inference
- Simplest problems are supervised learning: data such as images labelled with content (eg contains bicycle)

- Machine Learning seeks patterns in data: based on probabilistic analysis rather than logical inference
- Simplest problems are supervised learning: data such as images labelled with content (eg contains bicycle)
- Task is to use this data to identify a function that classifies new images (ie image contains bicycle)

- Machine Learning seeks patterns in data: based on probabilistic analysis rather than logical inference
- Simplest problems are supervised learning: data such as images labelled with content (eg contains bicycle)
- Task is to use this data to identify a function that classifies new images (ie image contains bicycle)
- Initial enthusiasm in 1980's was followed by disillusionment over unreliable and frequently poor results

• One criticism of this early work was that it was heuristic and ad-hoc.

• • = • • = •

- One criticism of this early work was that it was heuristic and ad-hoc.
- A series of EU Networks have promoted principled machine learning over a 20 year period (1993-2013):
 - NeuroCOLT, NeuroCOLT2, PASCAL, PASCAL2

- One criticism of this early work was that it was heuristic and ad-hoc.
- A series of EU Networks have promoted principled machine learning over a 20 year period (1993-2013):
 - NeuroCOLT, NeuroCOLT2, PASCAL, PASCAL2
 - Influential in promoting a paradigm shift both in ML, as well as uptake of ML in Computer Vision and Natural Language Processing

- One criticism of this early work was that it was heuristic and ad-hoc.
- A series of EU Networks have promoted principled machine learning over a 20 year period (1993-2013):
 - NeuroCOLT, NeuroCOLT2, PASCAL, PASCAL2
 - Influential in promoting a paradigm shift both in ML, as well as uptake of ML in Computer Vision and Natural Language Processing
 - In its final two years 30% of papers at top two ML conferences included an author from the PASCAL2 network.

- One criticism of this early work was that it was heuristic and ad-hoc.
- A series of EU Networks have promoted principled machine learning over a 20 year period (1993-2013):
 - NeuroCOLT, NeuroCOLT2, PASCAL, PASCAL2
 - Influential in promoting a paradigm shift both in ML, as well as uptake of ML in Computer Vision and Natural Language Processing
 - In its final two years 30% of papers at top two ML conferences included an author from the PASCAL2 network.
- Will give an example of results on generalisation of learning systems

伺 ト イ ヨ ト イ ヨ

• A learning system uses a sample of data to try to identify the pattern

• • = • • = •

- A learning system uses a sample of data to try to identify the pattern
- But we need the pattern to perform well on new (previously unseen) data: this is generalisation

- A learning system uses a sample of data to try to identify the pattern
- But we need the pattern to perform well on new (previously unseen) data: this is generalisation
- Can be analysed in a statistical framework assuming training and test data are drawn from the same distribution (PAC or probably approximately correct framework)

- A learning system uses a sample of data to try to identify the pattern
- But we need the pattern to perform well on new (previously unseen) data: this is generalisation
- Can be analysed in a statistical framework assuming training and test data are drawn from the same distribution (PAC or probably approximately correct framework)
- PAC-Bayes bounds are based on defining a prior distribution over the functions and then choosing a posterior distribution that compromises between loss on the training data and shift from the prior

- A learning system uses a sample of data to try to identify the pattern
- But we need the pattern to perform well on new (previously unseen) data: this is generalisation
- Can be analysed in a statistical framework assuming training and test data are drawn from the same distribution (PAC or probably approximately correct framework)
- PAC-Bayes bounds are based on defining a prior distribution over the functions and then choosing a posterior distribution that compromises between loss on the training data and shift from the prior
- Note that bound holds for all posterior distributions

Form of the PAC-Bayes SVM bound

 Bound involves KL divergence between prior and posterior and between empirical and true loss (as distributions over discrete set {0,1})

• • = • • = •

Form of the PAC-Bayes SVM bound

- Bound involves KL divergence between prior and posterior and between empirical and true loss (as distributions over discrete set {0,1})
- If we define the inverse of the KL by

 $\mathrm{KL}^{-1}(q, A) = \max\{p : \mathrm{KL}(q \| p) \le A\}$

then with probability $1-\delta$ over the choice of the *m* sample

$$\Pr\left(\langle \mathbf{w}, \phi(\mathbf{x}) \rangle \neq y\right) \leq 2\min_{\mu} \mathrm{KL}^{-1}\left(\mathbb{E}_m[\tilde{F}(\mu\gamma(\mathbf{x}, y))], \frac{\mu^2/2 + \ln \frac{m+1}{\delta}}{m}\right)$$

where \mathbb{E}_m is the empirical average of the cumulative normal distribution (\tilde{F}) of a scaling μ of the margin $\gamma(\mathbf{x}, y)$ of example (\mathbf{x}, y)

• In PAC-Bayes we are free to choose the prior as long as it doesn't depend on the training data

• • = • • =

- In PAC-Bayes we are free to choose the prior as long as it doesn't depend on the training data
- Bound corresponds to prior at the origin

4 3 6 4 3

- In PAC-Bayes we are free to choose the prior as long as it doesn't depend on the training data
- Bound corresponds to prior at the origin
- Can use part of the data to estimate a better prior and then evaluate the bound on the remaining data

• Comparison with X-fold Xvalidation, PAC-Bayes Bound and the Prior PAC-Bayes Bound

• • = • • = •

- Comparison with X-fold Xvalidation, PAC-Bayes Bound and the Prior PAC-Bayes Bound
- UCI datasets

• • = • • = •

- Comparison with X-fold Xvalidation, PAC-Bayes Bound and the Prior PAC-Bayes Bound
- UCI datasets
- Select C and σ that lead to minimum Classification Error (CE)

4 E 6 4 E 6

- Comparison with X-fold Xvalidation, PAC-Bayes Bound and the Prior PAC-Bayes Bound
- UCI datasets
- Select C and σ that lead to minimum Classification Error (CE)
 - For X-F XV select the pair that minimize the validation error

- Comparison with X-fold Xvalidation, PAC-Bayes Bound and the Prior PAC-Bayes Bound
- UCI datasets
- Select C and σ that lead to minimum Classification Error (CE)
 - For X-F XV select the pair that minimize the validation error
 - For PAC-Bayes Bound and Prior PAC-Bayes Bound select the pair that minimize the bound

		Classifier					
		SVM				η Prior SVM	
Problem		2FCV	10FCV	PAC	PrPAC	PrPAC	τ -PrPAC
digits	Bound	-	-	0.175	0.107	0.050	0.047
	CE	0.007	0.007	0.007	0.014	0.010	0.009
waveform	Bound	-	-	0.203	0.185	0.178	0.176
	CE	0.090	0.086	0.084	0.088	0.087	0.086
pima	Bound	-	-	0.424	0.420	0.428	0.416
	CE	0.244	0.245	0.229	0.229	0.233	0.233
ringnorm	Bound	-	-	0.203	0.110	0.053	0.050
	CE	0.016	0.016	0.018	0.018	0.016	0.016
spam	Bound	-	-	0.254	0.198	0.186	0.178
	CE	0.066	0.063	0.067	0.077	0.070	0.072

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

æ

• First attempts at creating Artificial Intelligence were focussed on reproducing logical reasoning in automated programs

- First attempts at creating Artificial Intelligence were focussed on reproducing logical reasoning in automated programs
- All too frequently these approaches were unable to avoid the combinatorial explosion of possibilities as solutions were sought in very large search spaces

- First attempts at creating Artificial Intelligence were focussed on reproducing logical reasoning in automated programs
- All too frequently these approaches were unable to avoid the combinatorial explosion of possibilities as solutions were sought in very large search spaces
- Effective heuristics were developed when branching factors were not too large: eg deep blue Chess playing

- First attempts at creating Artificial Intelligence were focussed on reproducing logical reasoning in automated programs
- All too frequently these approaches were unable to avoid the combinatorial explosion of possibilities as solutions were sought in very large search spaces
- Effective heuristics were developed when branching factors were not too large: eg deep blue Chess playing
- General purpose AI seemed as remote as ever

• The core of the success of Computer Science has been the principle of divide and conquer

• • = • • = •

- The core of the success of Computer Science has been the principle of divide and conquer
 - Decompose a problem into clearly defined subproblems

- The core of the success of Computer Science has been the principle of divide and conquer
 - Decompose a problem into clearly defined subproblems
 - Repeat until the solution to the subproblems can be implemented directly

- The core of the success of Computer Science has been the principle of divide and conquer
 - Decompose a problem into clearly defined subproblems
 - Repeat until the solution to the subproblems can be implemented directly
 - Test solutions work against the definitions at each level

- The core of the success of Computer Science has been the principle of divide and conquer
 - Decompose a problem into clearly defined subproblems
 - Repeat until the solution to the subproblems can be implemented directly
 - Test solutions work against the definitions at each level
 - Deliver solution of overall problem

- The core of the success of Computer Science has been the principle of divide and conquer
 - Decompose a problem into clearly defined subproblems
 - Repeat until the solution to the subproblems can be implemented directly
 - Test solutions work against the definitions at each level
 - Deliver solution of overall problem
- What about composing learning systems

- The core of the success of Computer Science has been the principle of divide and conquer
 - Decompose a problem into clearly defined subproblems
 - Repeat until the solution to the subproblems can be implemented directly
 - Test solutions work against the definitions at each level
 - Deliver solution of overall problem
- What about composing learning systems
 - More tricky as functionality shifts as learning progresses

- The core of the success of Computer Science has been the principle of divide and conquer
 - Decompose a problem into clearly defined subproblems
 - Repeat until the solution to the subproblems can be implemented directly
 - Test solutions work against the definitions at each level
 - Deliver solution of overall problem
- What about composing learning systems
 - More tricky as functionality shifts as learning progresses
 - But first attempts to use principled approaches to do this within the PASCAL2 network: application to Go.

- The core of the success of Computer Science has been the principle of divide and conquer
 - Decompose a problem into clearly defined subproblems
 - Repeat until the solution to the subproblems can be implemented directly
 - Test solutions work against the definitions at each level
 - Deliver solution of overall problem
- What about composing learning systems
 - More tricky as functionality shifts as learning progresses
 - But first attempts to use principled approaches to do this within the PASCAL2 network: application to Go.
- Became the focus of a follow-on project CompLACS:

 EU collaborative project looking at the potential of this strategy led by UCL, see http://complacs.cs.ucl.ac.uk/

• • = • • = •

- EU collaborative project looking at the potential of this strategy led by UCL, see http://complacs.cs.ucl.ac.uk/
- Developed principles and practice for combining learning subcomponents, with guarantees on performance of the composition

周 ト イ ヨ ト イ ヨ ト

- EU collaborative project looking at the potential of this strategy led by UCL, see http://complacs.cs.ucl.ac.uk/
- Developed principles and practice for combining learning subcomponents, with guarantees on performance of the composition
- Example application was the control of Robots, UAVs, and web portal

- EU collaborative project looking at the potential of this strategy led by UCL, see http://complacs.cs.ucl.ac.uk/
- Developed principles and practice for combining learning subcomponents, with guarantees on performance of the composition
- Example application was the control of Robots, UAVs, and web portal
- Will give one example of a system developed for reinforcement learning (RL)

伺下 イヨト イヨト

Compressed Conditional Mean Embeddings for RL

• RL requires an agent to choose actions based on an observed state in order to maximise future reward: can model robots, UAVs and playing games in this framework

Compressed Conditional Mean Embeddings for RL

- RL requires an agent to choose actions based on an observed state in order to maximise future reward: can model robots, UAVs and playing games in this framework
- Key problem can be learning stochastic environment and estimating effect of actions on future rewards

Compressed Conditional Mean Embeddings for RL

- RL requires an agent to choose actions based on an observed state in order to maximise future reward: can model robots, UAVs and playing games in this framework
- Key problem can be learning stochastic environment and estimating effect of actions on future rewards
- Kernel methods enable embedding of probability distributions in kernel defined feature spaces (mean embedding):
 - evaluating an expectation becomes a simple inner product as functions are also represented as points in the feature space.

- Computing the influence of actions requires conditional mean embeddings:
 - reduces to learning a regression function from state, action pairs to distributions in the kernel defined feature space.

- Computing the influence of actions requires conditional mean embeddings:
 - reduces to learning a regression function from state, action pairs to distributions in the kernel defined feature space.
- Reduces continuous RL to finite state RL on training data:
 - hence can do exact planning provided not too many states

- Computing the influence of actions requires conditional mean embeddings:
 - reduces to learning a regression function from state, action pairs to distributions in the kernel defined feature space.
- Reduces continuous RL to finite state RL on training data:
 - hence can do exact planning provided not too many states
- Matching pursuit and data compression ensure computation does not explode

Simulated under-actuated cart-pole swing-up benchmark problem • $S = \mathbb{R}^2$, $s = (\theta, \dot{\theta})$, $\mathcal{A} = [-50, 50]$, horizontal force in newtons

Simulator calibrated to model the dynamics of PelicanTM quadrocopter platforms $S \subset \mathbb{R}^{13}$, $s = (x, y, z, \theta \phi, \psi, \dot{x}, \dot{y}, \dot{z}, \dot{\theta}, \dot{\phi}, \dot{\psi}, F)$ $\mathcal{A} \subset \mathbb{R}^3$ represents desired velocity vectors, PID controller translates into low level commands Tasks:

- Navigation: platform must navigate to point
- Holding pattern: platform must stay in circle and maintain minimum velocity

Experiments: Quadrocopter Results

Figure: Quadrocopter tasks: navigation task

RKHS controller better in high-dim. state-space

Experiments: Quadrocopter Results

Figure: Quadrocopter tasks: navigation task

RKHS controller better in high-dim. state-space

 Extensions using deep learning to represent the kernel have been effective: richer representations but more data required.

Experiments: Quadrocopter Results

Figure: Quadrocopter tasks: holding pattern

(日)

-

• see https://youtu.be/FNJQXRQbgX8

▲御▶ ▲ 臣▶ ▲ 臣▶

æ

• Remarkable things emerge when just a few learning systems are combined

A B M A B M

- Remarkable things emerge when just a few learning systems are combined
 - IBM Watson uses information retrieval subsystems to propose potential answers combined with a machine learning method of ranking them

- 3 b - 4 3 b

- Remarkable things emerge when just a few learning systems are combined
 - IBM Watson uses information retrieval subsystems to propose potential answers combined with a machine learning method of ranking them
 - AlphaGo the Go playing system developed by DeepMind is based on the composition of three components: a deep learning system to evaluate board value; a prioritisation system for move planning that trades exploration and exploitation; and a deep learning system to compute the value function of a move

• Turning an AI problem into logical inference often throws the baby out with the bathwater:

★ ∃ ► < ∃ ►</p>

- Turning an AI problem into logical inference often throws the baby out with the bathwater:
 - nuanced representations have been shown to retain semantic information, furthermore the additional information contains patterns that machine learning can for example use to prioritise the search

- Turning an AI problem into logical inference often throws the baby out with the bathwater:
 - nuanced representations have been shown to retain semantic information, furthermore the additional information contains patterns that machine learning can for example use to prioritise the search
 - Machine learning can harvest patterns in data to ensure that these clues are exploited to create effective performance

- Turning an AI problem into logical inference often throws the baby out with the bathwater:
 - nuanced representations have been shown to retain semantic information, furthermore the additional information contains patterns that machine learning can for example use to prioritise the search
 - Machine learning can harvest patterns in data to ensure that these clues are exploited to create effective performance
- But a combination of logical inference and machine learning techniques may be needed for further significant advances

• Principled approaches to machine learning have created reliable building blocks that when combined can generate behaviours that show progress towards general artificial intelligence

• • = • • = •

- Principled approaches to machine learning have created reliable building blocks that when combined can generate behaviours that show progress towards general artificial intelligence
- Caveats:
 - is intelligent behaviour the same as real intelligence?
 - still missing a general framework for creating composite learning systems.

• • = = • • = =

- Principled approaches to machine learning have created reliable building blocks that when combined can generate behaviours that show progress towards general artificial intelligence
- Caveats:
 - is intelligent behaviour the same as real intelligence?
 - still missing a general framework for creating composite learning systems.
- But these advances do also challenge our understanding of what general artificial intelligence is:
 - Humans are expert at rationalising our actions after the event: not clear that we make them so rationally?

伺 ト イヨト イヨト