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Aims

Give a personal perspective on the recent progress and
resultant buzz around artificial intelligence

Throw light on the place of machine learning in these
developments

Highlight the leading role that Europe has played

Suggest promising directions for further attention
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Machine Learning (ML)

Machine Learning seeks patterns in data: based on
probabilistic analysis rather than logical inference

Simplest problems are supervised learning: data such as
images labelled with content (eg contains bicycle)

Task is to use this data to identify a function that classifies
new images (ie image contains bicycle)

Initial enthusiasm in 1980’s was followed by disillusionment
over unreliable and frequently poor results
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Principled Machine Learning

One criticism of this early work was that it was heuristic and
ad-hoc.

A series of EU Networks have promoted principled machine
learning over a 20 year period (1993-2013):

NeuroCOLT, NeuroCOLT2, PASCAL, PASCAL2
Influential in promoting a paradigm shift both in ML, as well
as uptake of ML in Computer Vision and Natural Language
Processing
In its final two years 30% of papers at top two ML conferences
included an author from the PASCAL2 network.

Will give an example of results on generalisation of learning
systems
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Generalisation of a learner

A learning system uses a sample of data to try to identify the
pattern

But we need the pattern to perform well on new (previously
unseen) data: this is generalisation

Can be analysed in a statistical framework assuming training
and test data are drawn from the same distribution (PAC or
probably approximately correct framework)

PAC-Bayes bounds are based on defining a prior distribution
over the functions and then choosing a posterior distribution
that compromises between loss on the training data and shift
from the prior

Note that bound holds for all posterior distributions
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Form of the PAC-Bayes SVM bound

Bound involves KL divergence between prior and posterior and
between empirical and true loss (as distributions over discrete
set {0, 1})

If we define the inverse of the KL by

KL−1(q,A) = max{p : KL(q‖p) ≤ A}

then with probability 1− δ over the choice of the m sample

Pr (〈w, φ(x)〉 6= y) ≤ 2 min
µ

KL−1

(
Em[F̃ (µγ(x, y))],

µ2/2 + ln m+1
δ

m

)

where Em is the empirical average of the cumulative normal
distribution (F̃ ) of a scaling µ of the margin γ(x, y) of
example (x, y)
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Definition of the Prior

In PAC-Bayes we are free to choose the prior as long as it
doesn’t depend on the training data

Bound corresponds to prior at the origin

Can use part of the data to estimate a better prior and then
evaluate the bound on the remaining data
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Model Selection with the new bound: setup

Comparison with X-fold Xvalidation, PAC-Bayes Bound and
the Prior PAC-Bayes Bound

UCI datasets

Select C and σ that lead to minimum Classification Error
(CE)

For X-F XV select the pair that minimize the validation error
For PAC-Bayes Bound and Prior PAC-Bayes Bound select the
pair that minimize the bound
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Results

Classifier
SVM ηPrior SVM

Problem 2FCV 10FCV PAC PrPAC PrPAC τ -PrPAC

digits Bound – – 0.175 0.107 0.050 0.047
CE 0.007 0.007 0.007 0.014 0.010 0.009

waveform Bound – – 0.203 0.185 0.178 0.176
CE 0.090 0.086 0.084 0.088 0.087 0.086

pima Bound – – 0.424 0.420 0.428 0.416
CE 0.244 0.245 0.229 0.229 0.233 0.233

ringnorm Bound – – 0.203 0.110 0.053 0.050
CE 0.016 0.016 0.018 0.018 0.016 0.016

spam Bound – – 0.254 0.198 0.186 0.178
CE 0.066 0.063 0.067 0.077 0.070 0.072
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Good Old-fashioned Artificial Intelligence (GOFAI)

First attempts at creating Artificial Intelligence were focussed
on reproducing logical reasoning in automated programs

All too frequently these approaches were unable to avoid the
combinatorial explosion of possibilities as solutions were
sought in very large search spaces

Effective heuristics were developed when branching factors
were not too large: eg deep blue Chess playing

General purpose AI seemed as remote as ever
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Composing Learning Systems

The core of the success of Computer Science has been the
principle of divide and conquer

Decompose a problem into clearly defined subproblems
Repeat until the solution to the subproblems can be
implemented directly
Test solutions work against the definitions at each level
Deliver solution of overall problem

What about composing learning systems

More tricky as functionality shifts as learning progresses
But first attempts to use principled approaches to do this
within the PASCAL2 network: application to Go.

Became the focus of a follow-on project CompLACS:
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Composing Learning for Artificial Cognitive Systems
(CompLACS)

EU collaborative project looking at the potential of this
strategy led by UCL, see http://complacs.cs.ucl.ac.uk/

Developed principles and practice for combining learning
subcomponents, with guarantees on performance of the
composition

Example application was the control of Robots, UAVs, and
web portal

Will give one example of a system developed for reinforcement
learning (RL)
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Compressed Conditional Mean Embeddings for RL

RL requires an agent to choose actions based on an observed
state in order to maximise future reward: can model robots,
UAVs and playing games in this framework

Key problem can be learning stochastic environment and
estimating effect of actions on future rewards

Kernel methods enable embedding of probability distributions
in kernel defined feature spaces (mean embedding):

evaluating an expectation becomes a simple inner product as
functions are also represented as points in the feature space.
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Compressed Conditional Mean Embeddings for RL

Computing the influence of actions requires conditional mean
embeddings:

reduces to learning a regression function from state, action
pairs to distributions in the kernel defined feature space.

Reduces continuous RL to finite state RL on training data:

hence can do exact planning provided not too many states

Matching pursuit and data compression ensure computation
does not explode
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Experiments: Cart-pole benchmark

Simulated under-actuated cart-pole swing-up benchmark problem

S = R2, s = (θ, θ̇), A = [−50, 50], horizontal force in newtons
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Experiments: Quadrocopter Simulator

Simulator calibrated to model the dynamics of PelicanTM

quadrocopter platforms
S ⊂ R13, s = (x , y , z , θ φ, ψ, ẋ , ẏ , ż , θ̇, φ̇, ψ̇,F )
A ⊂ R3 represents desired velocity vectors, PID controller
translates into low level commands
Tasks:

Navigation: platform must navigate to point

Holding pattern: platform must stay in circle and maintain
minimum velocity
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Experiments: Quadrocopter Results

Figure: Quadrocopter tasks: navigation task

RKHS controller better in high-dim. state-space

Extensions using deep learning to represent the kernel have
been effective: richer representations but more data required.
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Experiments: Quadrocopter Results

Figure: Quadrocopter tasks: holding pattern
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Video

see https://youtu.be/FNJQXRQbgX8
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Progress on Composing Learning

Remarkable things emerge when just a few learning systems
are combined

IBM Watson uses information retrieval subsystems to propose
potential answers combined with a machine learning method of
ranking them
AlphaGo the Go playing system developed by DeepMind is
based on the composition of three components: a deep learning
system to evaluate board value; a prioritisation system for
move planning that trades exploration and exploitation; and a
deep learning system to compute the value function of a move
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Machine Learning for Artificial Intelligence

Turning an AI problem into logical inference often throws the
baby out with the bathwater:

nuanced representations have been shown to retain semantic
information, furthermore the additional information contains
patterns that machine learning can for example use to prioritise
the search
Machine learning can harvest patterns in data to ensure that
these clues are exploited to create effective performance

But a combination of logical inference and machine learning
techniques may be needed for further significant advances
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Conclusion

Principled approaches to machine learning have created
reliable building blocks that when combined can generate
behaviours that show progress towards general artificial
intelligence

Caveats:

is intelligent behaviour the same as real intelligence?
still missing a general framework for creating composite
learning systems.

But these advances do also challenge our understanding of
what general artificial intelligence is:

Humans are expert at rationalising our actions after the event:
not clear that we make them so rationally?
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