The future of computing: Quantum

András Gilyén

The future of computing: Quantum

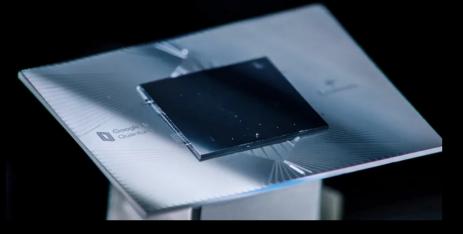
-Our world is quantum mechanical.

-Quantum computers enable novel computations.

Quantum effects for computing

-Superposition: a qubit can be both 0 and 1 simultaneously (with some amplitudes)

-Interference: computations in superposition can collectively contribute to the final result


-Entanglement: qubits can have stronger than classical correlations

Quantum supremacy

-Quantum computers have the potential to solve some problems exponentially more efficiently than classical computers.

-Google just reported passing the cross-over point, where a quantum chip can be much faster in practice than the best available supercomputer.

Boaz Barak's analogy (quoted by Scott Aaronson)

VS.

Boaz Barak's analogy (quoted by Scott Aaronson)

VS.

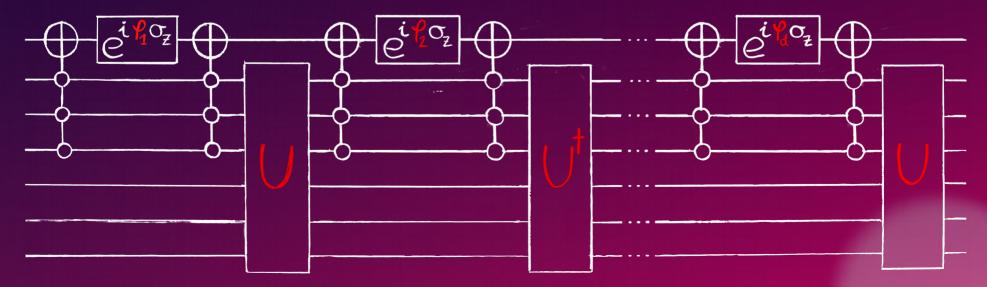
"Deep Blue vs. Kasparov"

Main techniques for quantum algorithms

-Quantum Fourier transform: Shor's algorithm for factoring, breaking RSA crypto-system, etc.

-Hamiltonian simulation: dynamical simulation of quantum systems for chemistry, material science, etc.

-Grover search: generic quadratic speed-up for unstructured search problems


-Large-dimensional regression (HHL algorithm): speeding-up various machine learning applications

Quantum Singular Value transformation

-A common unification / generalization of Hamiltonian simulation, Grover search and regression (HHL).

-Block-encodings: exponentially faster matrix operations

-Efficient circuits & near-term applicability

-Speeding up gradient computation using quantum computers with applications to variational circuits and quantum neural networks.

0.500

5.000

1.400

3.200

A.100

2.300

-Speeding up gradient computation using quantum computers with applications to variational circuits and quantum neural networks.

-Speeding up Linear Programs, Semidefinite Programs, and general convex optimization problems + finding limitations on quantum speed-ups.

-Speeding up gradient computation using quantum computers with applications to variational circuits and quantum neural networks.

-Speeding up Linear Programs, Semidefinite Programs, and general convex optimization problems + finding limitations on quantum speed-ups.

-Efficiently working with the lowest-energy states of some structured Hamiltonians (quantum mechanical systems)

-Speeding up gradient computation using quantum computers with applications to variational circuits and quantum neural networks.

-Speeding up Linear Programs, Semidefinite Programs, and general convex optimization problems + finding limitations on quantum speed-ups.

-Efficiently working with the lowest-energy states of some structured Hamiltonians (quantum mechanical systems).

-Using quantum machine learning ideas to speed up classical machine learning tasks.

I would like to thank my wonderful co-authors. Especially, my PhD advisor Ronald de Wolf, for introducing me to these fascinating topics and guiding me throughout my PhD years. * source of images:
-Pinterest
-Google
-IBM / digitaltrends.com
-Wikipedia