

EMBL

Ewan Birney EMBL Deputy Director General

The European Molecular Biology Laboratory (EMBL) History

EMBL's Sites

EMBL's Member States

Member states (27)

Austria 1974 Denmark 1974 France 1974 Germany 1974 Israel 1974 Italy 1974 Netherlands 1974 Sweden 1974 Switzerland 1974 United Kingdom 1974 Finland 1984 **Greece 1984** Norway 1985 **Spain** 1986

Belgium 1990 Portugal 1998 Ireland 2003 Iceland 2005 Croatia 2006 Luxembourg 2007 Czech Republic 2014 Malta 2016 Hungary 2017 Slovakia 2018 Montenegro 2018 Poland 2019 Lithuania 2019

Associate member states

Australia 2008 Argentina 2014

Prospect member states

Estonia 2019

EMBL is Europe's sole life sciences intergovernmental organisation

EMBL

EMBL's Legally required turnover model

EMBL's Missions

EMBL's Missions

Scientific Services: EMBL-EBI Data Resources

EMBL-EBI Data Resources

Biolmage Archive

Image datasets linked to articles

Working with communities

Integration with omics data

Foundation for AI and analysis methods development

Many data types

Multiple data ingest streams at scale

Community-driven metadata

Integration and curation

Links with literature, unstructured data,

Innovative Data Science

Gene x Environment technique without precise definition of environment of interest.

"BigData" Epidemiology – able to process >100 million person with >1 billion data items

Innovation in statistical methods

Innovation in data science engineering

Current human datasets

* * * * * * *							
EU Child Cohort Network	Danish EHR	UK BioBank	Estonian Biobank	Lifework	Constances	lceland/ DeCode	German National Cohort
200K parents + children	5000K	500K	50K	88K	200K	~350K	200K
available	available	available	available	available	available		

- Environmental measures (e.g. place of residence/work, smoking)
- Social measures (e.g. mobile phone use, location)
- Linked to medical records
- Biopsies (e.g. blood)

>6 millions subjects

Example research

UK BioBank Cardiac MRI scans

"Standard" GWAS

r²

0.8

200

Haemodynamic model

Genomic Medicine

Strategic advice

Reference data

Federation

Training

Theory@EMBL

Theoretical approaches to reveal the principles in complex living (eco)systems

(1) (1) (1) (2)		
Planetary Biology: modelling ecosystems	Organisms in their dynamic environment	Microbial ecosystems
Multi-scale modeling (e.g. SYNTERRA)	Dynamical Systems Synchronization Theory	Modeling emergent properties (collective metabolism)

Theory Sabbatical Programme

Researchers working on theoretical and mathematical modelling aspects of biology can apply for financial and organisational support for visits to any of EMBL's sites

SARS-CoV-2 Scientific actions: Research and Service

For information only

Identifying how potential COVID-19 drugs work

Following computational analysis of potentially beneficial existing drugs, EMBL seeks to understand how the drug works in living cells and its efficacy against COVID-19 Taking a closer look at infected cells

Electron microscopy specialists collaborate with hospital researchers to understand the changes occurring in cell structures upon SARS-CoV-2 infection Exploring synthetic antibodies to stop coronavirus

Identifying nanobodies that could bind to SARS-CoV-2 and prevent it from entering human cells

SARS-CoV-2 Scientific actions: COVID-19 Data Portals

European expertise bringing global data together

🌔 COVID-19 Data Portal

About Data Hubs Other resources Our partners Submit data

Sequences Expression Proteins Structures Literature

Accelerating research through data sharing

Sequences 🤿

Raw and assembled sequences related to the COVID-19 outbreak, including outbreak isolates and records relating to coronavirus biology. Includes extensive sampling information.

35,965 records >

Proteins Đ

Curated functional and classification data on the SARS-CoV-2 protein entries and associated protein receptors.

142 records >

Expression data 🤤

Gene and protein expression data of human genes implicated in the virus infection of the host cells. Identifying cell types and genes with highest expression in SARS-CoV-2 infections.

51 records >

Structures 🔿

SARS-CoV-2 protein structures, highlighting important structural features to support the development of treatments and vaccines.

231 records >

Compounds 🕤

Curated range of SARS-CoV-2 compound activity data.

Literature 🕣

Search for the latest literature about SARS-CoV-2.

91,041 publications >

Range of SARS-CoV-2 and SARS-CoV data for drug target identification and prioritisation.

24 records >

Targets Đ

Related resources 😔

A range of related resources for studying the SARS-CoV-2 coronavirus and the COVID-19 disease One easily accessible site, where researchers can upload, share, and access data related to the new SARS-CoV-2

Data includes sequences, expression data, protein function and structures, compound activity, drug targets, literature, and others

EMBL-EBI is facilitating the set-up of national SARS-CoV-2 Data Hubs across Europe

Hubs will be used by public health agencies and research centres doing genome sequencing of the new virus at national or regional levels

EMBL Training the Next Generation

Internal training

200 PhD students **250** postdocs EMBL PhD and Postdoctoral programmes

EMBL Fellows' Career Service General training and development

External training

~7,000 guests per year

EMBL Courses and Conferences Virtual training and e-learning programmes Scientific Visitor Programme

Theory sabbatical programme

Training: Future – Engineers as well as Scientists

Pre-doc course: Scientific modules with focus on new research themes

Post-docs: new EIPOD-like fellowships dedicated to new research themes **with our member states**

Courses and Conferences: Focus on new research themes and enhancing e-Learning Programme

Sabbaticals: Developing expertise through collaborations with member state experts and institutions

Career Accelerator for Research Infrastructure Scientists

New programme for technology developers and engineers to train the future leaders of European infrastructures and platforms

Thank you all And questions

