
Qualitative insights into abstraction skills from
exam scripts

Julia Crossley1 Marjahan Begum 2 JosephWood 2

Department of Computer Science, City University of London

Introduction

This poster describes a study that applies a framework to a sample of exam scripts

from a second year cohort. The chosen module is an Algorithm and Data Structure

course that takes an implementation approach. The aim of the study is to explore

the extent to which abstraction skills are revealed in this study.

The Framework

The framework classifies abstraction skills into three types and links them to the

following inference types (Crossley, 2023; Kallia, 2023; Rappaport, 2023):

Reductive abstraction 7−→ Abductive reasoning 7−→ Reducing information

Contextual abstraction 7−→ Inductive reasoning 7−→ Extrapolating a pattern

Constructive abstraction 7−→ Deductive reasoning 7−→ Constructing an idea

Description of study

Qualitative study investigating how the framework can be applied and refined is a

first step to validating it. In order to use a range of data that is informative across

the competency spectrum, a sample of naturally occurring data was selected and

is being analysed (Lister,2010). Twenty two scripts were chosen out of a total

of 165. In order to select a sample that would give interesting insights, a broad

pattern was identified through regression analysis using the total marks on each

script and the marks on the question. Scripts that fit the of the following criteria

in order of priority, were selected:

Had the strongest deviation from the regression line.

Fit on the regression line. Differences between marks on the set question were

attributed to a pattern of achievement that manifested in differences in the full

exam mark.

Had a similar overall mark to another chosen script and a significantly different

mark on the chosen question.

If scatter clusters were identified, only one script was chosen from the cluster. Cor-

relation between mark on the question and overall mark on the exam was strong

enough to use a regression line as indicative of a general pattern.

Description of question: Creating an algorithm

Write a method/function in pseudo-code that receives a binary search tree and a cir-

cular list as its parameters, both containing positive integer keys. Your algorithm should

return the sum of the smallest key from the circular list and the smallest key from the

binary search tree. If either input structure is empty, then return the smallest key from

the other. If both input parameters are empty, then return zero. Feel free to use auxiliary

functions/methods if these help you. You do not need to redefine any basic operation

that you call. The use of programming language specific library functions, other than the

basic operations taught to you in this module, is not allowed. Explain how your method

works by means of comments in the algorithm.

Why the question is interesting to study

There is always variation in howa computational problem can be solved, evenwhen

controlling for purpose. When combined with module content and lateral knowl-

edge, the variationwewould see in approach also gives scope for solving questions

in ways that may be less efficient, for example by storing information about states

that do not need to be retrieved. This particular exam question demonstrates this

well.It also gives opportunity to identify features that in this setting look stylistic

but could highlight misconceptions at later educational stages.

Applying the model

The following describes behaviours that can be linked to each reasoning type. Due
to the nature of the question, the scope for using abduction is limited.

Inference type Behaviour

Abductive Recognising appropriate seen code;

placing appropriate seen code.

Inductive Writing down an instance of a type;

tracing a specific instance(s) of a

type/types in the algorithm; adapting

pieces of code that have been seen

elsewhere using tracing.

Deductive Adapting seen code to the purposes of the

algorithm; meta-tracing.

Mindmap of misconceptions

Example of misconceptions

Here is an example of a made up response that is representative of the range of

misconceptions in the sample.

Int MinBST ← 0
Int MinCLL← 0
Node p← BST . Incorrect type, unless specific implementation is assumed.
if CLL.isEmpty() then

while p! = NULL do MinBST = p.key
end while . No traversal of structure; due to this the condition does not

change and the while never terminates.

if CLL! = 0 AND BST == 0 then return MinCLL . Nested if statement
means we have mutually exclusive conditions.

end if

else if BST.length! = 0 then return MinBST . Incorrect condition and type.
else

Node q ← CLL.tail
if q.key < MinCLL then

q ← q.next . Confusing condition for traversal and retrieval of key.
end if

end if

MinCLL← q . Reference to local variable outside nested statement. return
MinCLL + MinBST

Conclusions

The methods of these studies need to remain qualitative in order to pick out

enough detail. Although a single question may be the focus of the analysis, it

is necessary to place it relative to other tasks, particularly if they are in the same

setting. This offers more conclusive insights into the nature of students’ miscon-

ceptions, as mistakes cannot always be attributed to a single misconceptions. This

is particularly the case in code or algorithm creation: what is a mistake in one ap-

proach isn’t necessarily in another. It is hoped that insights that come out of this

study contribute towards developing a framework that can be used both diagnos-

tically and predictively.

References

[1] Thornton C.

Quantitative abstraction theory.

Journal of Artificial Intelligence and Simulation Behaviour.,

1:281–290, 2003.

[2] Crossley J.

How do students conceptualize and represent abstract ideas? an

initial exploration.

In Proceedings of the 2023 ACM Conference on International

Computing Education Research - Volume 2, ICER ’23, page 82–86,

New York, NY, USA, 2023. Association for Computing Machinery.

[3] Maria Kallia.

The search for meaning: Inferential strategic reading

comprehension in programming.

In Proceedings of the 2023 ACM Conference on International

Computing Education Research - Volume 1, ICER ’23, page 1–14,

New York, NY, USA, 2023. Association for Computing Machinery.

[4] Raymond Lister, Tony Clear, Simon, Dennis J. Bouvier, Paul

Carter, Anna Eckerdal, Jana Jacková, Mike Lopez, Robert

McCartney, Phil Robbins, Otto Seppälä, and Errol Thompson.

Naturally occurring data as research instrument: Analyzing

examination responses to study the novice programmer.

SIGCSE Bull., 41(4):156–173, jan 2010.

[5] Sara Nurollahian, Matthew Hooper, Adriana Salazar, and Eliane

Wiese.

Use of an anti-pattern in cs2: Sequential if statements with

exclusive conditions.

In Proceedings of the 54th ACM Technical Symposium on Computer

Science Education V. 1, SIGCSE 2023, page 542–548, New York,

NY, USA, 2023. Association for Computing Machinery.

[6] Kaasenbrood E. Perrenet J.

Levels of abstraction in students’ understanding of the concept

of algorithm: the qualitative perspective.

SIGCSE Bulletin, 38:270–274, 2006.

[7] Turner R.

Computational intention.

Studies in logic, Grammar and Rhetoric., 63:19–30, 2020.

[8] Rapaport W.

Philosophy of Computer Science: an introduction to the issues and

the literature.

Wiley-Blackwell, Hoboken, NJ, USA, 2023.

https://www.city.ac.uk/ ECSS ’23: Poster Session julia.crossley.2@city.ac.uk

https://www.city.ac.uk/
mailto:julia.crossley.2@city.ac.uk

