
Made with Emacs, LATEX and TikZ

Incremental Exploration of Linux Configuration Space
Georges Aaron Randrianaina1,4,5, Djamel Eddine Khelladi2,4,5, Olivier Zendra3,4,5, Mathieu Acher1,4,5,6

Univ Rennes1, CNRS2, Inria3, IRISA4, DiverSE5, INSA Rennes6, IUF7

Incremental Exploration of Linux Configuration Space
Georges Aaron Randrianaina1,4,5, Djamel Eddine Khelladi2,4,5, Olivier Zendra3,4,5, Mathieu Acher1,4,5,6

Univ Rennes1, CNRS2, Inria3, IRISA4, DiverSE5, INSA Rennes6, IUF7

Context and Motivation
Case Study:

The Linux Kernel

Fe
at
ur
es

A Highly-configurable and
Fast Moving System

+50
0/d
ay
*

+20
00/
day

*

* For x86_64 not counting other platforms (RISC-V, ARM, MIPS,. . . )

That Needs to be
Heavily Tested!

"The Linux Kernel does not have a test suite[. . . ] for hardware interaction [. . . ] The best
thing you can ever do for us is: you just build the Kernel and tell us if you have a

problem. That is our QA cycle."
–Greg Kroah-Hartman, Linux maintainer

Challenge and Objectives
•Building a x86_64 configuration can take up to 10 min so it would take about
a week of CPU-time for 1000 of them!
•We aim to reduce the build time by reusing the artefact of previous builds: this
technique is called Incremental Build
• Incremental build has been studied on code change
•Our contribution is to Bring Incremental Build to Software Configurations
Changes[1, 2, 3]

Vision

CONFIG_CRASH_CORE=y

CONFIG_KEXEC_CORE=y

CONFIG_GENERIC_ENTRY=y

CONFIG_UPROBES=y

CONFIG_HAVE_KPROBES=y

CONFIG_SRCU=y

CONFIG_TREE_SRCU=y

C1

CONFIG_NAMESPACES=y

CONFIG_UTS_NS=y

#CONFIG_TIME_NS not set

CONFIG_USER_NS=y

CONFIG_PID_NS=y

#CONFIG_NET_NS not set

CONFIG_TIMERFD=y

C2

CONFIG_IRQ_DOMAIN=y

CONFIG_IRQ_SIM=y

CONFIG_PREEMPT_BUILD=y

CONFIG_PREEMPT_NONE=y

CONFIG_FHANDLE=y

CONFIG_POSIX_TIMERS=y

CONFIG_OBJAGG=m

C3

25min VS 30min
Incremental Clean

Naive incremental approach

Using Make’s incremental strategy gives negative gains

•We rely on the incremental strategy of Make that captures the dependencies to
decide which parts to rebuild
•We built 50 random configurations in a row without running make clean

Using a Compiler Cache (Ccache) adds an overhead

• Ccache[4] is a compiler cache that speeds up recompilation by caching previous
compilations and detecting when the same compilation is being done again
•We built 100 random configurations in a row using Ccache

References
[1] Georges Aaron Randrianaina, Djamel Eddine Khelladi, Olivier Zendra, and Mathieu Acher. Towards Incremental Build of Software Configurations. ICSE’22, NIER
[2] Georges Aaron Randrianaina, Xhevahire Tërnava, Djamel Eddine Khelladi, and Mathieu Acher. On the Benefits and Limits of Incremental Build of Software Configurations: An
Exploratory Study. ICSE’22
[3] Georges Aaron Randrianaina. Incremental Build of Linux Kernel Configurations. In EuroDW’22
[5] ccache.dev

Our New PyroBuildS Approach

Exploration strategies

Base

mut2

mut3

mut1

Base

mut2

mut3

mut4

mut1 mut5

Radial Exploration Snake Exploration

Research questions

•RQ1 – Correctness and consistency: Are PyroBuildS incremental builds correct and
consistent with clean builds?
•RQ2 – Cost reduction: Are PyroBuildS incremental builds faster than clean builds?
•RQ3 – Diversity: Does PyroBuildS explore the configuration space for sufficient
diversity?

Preliminary results

RQ1 – Correctness and consistency

Base Mode Correctness (%) Consistency (%)

Default
radial 100% 100%
snake 100% 100%

Random

radial 80.5% 100%
snake 94.5% 100%
snake (Random) 85.2% 97.0%
radial (Random) 85.4% 98%

Incremental PyroBuildS mutations achieve 100% correctness with
defconfig, 80% with random base for radial, and 94.5% for snake, all

maintaining consistency compared to full randconfigs

RQ2 – Cost reduction

Using random configurations in radial and snake explorations, incremental
builds experience losses of -79% and -288%, while PyroBuildS mutations,
with both random and default configurations, limit losses to just -20%,

with gains of over 80%

RQ3 – Diversity

PyroBuildS covers 14/18 of Linux’s subsystems and 33% of the options
covered by randconfigs.

We described PyroBuildS, our new approach to incrementally explore the (very large)
configuration space of Linux, showing that appropriate exploration strategies trigger
synergies with these caching capabilities of Make.
Overall, mutation-based builds (1) provide a tradeoff between diversity, build time,
and correctness; (2) are an interesting complement to random configurations.


