Incremental Exploration of Linux Configuration Space
Georges Aaron Randrianaina®®*>, Djamel Eddine Khelladi®#*>, Olivier Zendra**°, Mathieu Acher!*~-

Univ Rennes? CNRS2 Inria’ IRISA4 DlverSE5 INSA Rennes® IUF7

I 32'5:53:@&@%(‘ | RS A¥Q"DiverSE INSA

Our New PyroBuildS Approach

Exploration strategies

NS [IHJI
FIF aC [F
LIGUEL

FIEI"-II"-IEE

Context and Motivation

Case Study: A Highly-configurable and That Needs to be
The Linux Kernel Fast Moving System Heavily Tested!

Build ¢

Features

15000 A
14000 00t : .
13000 An alySIS e
12000
SIS Radial Exploration Snake Exploration

* For x86_64 not counting other platforms (RISC-V, ARM, MIPS,...)

"The Linux Kernel does not have a test suite/...] for hardware interaction [...] The best Research questions
thing you can ever do for us is: you just build the Kernel and tell us if you have a
problem. That is our QA cycle.” RQ1 - Correctness and consistency: Are PyroBuildS incremental builds correct and
—-Greg Kroah-Hartman, Linux maintainer consistent with clean builds?

e RQ2 - Cost reduction: Are PyroBuildS incremental builds faster than clean builds?

)) e RQ3 - Diversity: Does PyroBuildS explore the configuration space for sufficient
Challenge and Objectives diversity?

Preliminary results
e We aim to reduce the build time by reusing the artefact of previous builds: this

technique is called Incremental Build RO1 - Correctness and consistency

e Incremental build has been studied on code change

e Building a x86_64 configuration can take up to 10 min so it would take about
a week of CPU-time for 1000 of them!

Base Mode Correctness (%) Consistency (%)
e Qur contribution is to Bring Incremental Build to Software Configurations et radial 100% 100%
Changes!® 2:° efault o ke 100% 100%
radial 80.5% 100%

snake 94.5% 100%

Vision Random ¢ ake (Random) 85.2% 97.0%
i 85.4% 98%

radial (Random)

CONELG_CRASH_CURESy CONEIG_NAMESPACES=y GO (0] DOLTA 0= Incremental PyroBuildS mutations achieve 100% correctness with
CONFIG_KEXEC_CORE=y CONFIG_UTS_NS=y CONFIG_IRQ_SIM=y o0 . , o
CONFIG_GENERIC_ENTRY=y #CONFIG_TIME_NS not set CONFIG_PREEMPT_BUILD= D=y defconfig, 80% with random base for radial, and 94.5% for snake, all
CONFIG_HAVE_KPROBES=y CONFIG_PID_NS=y CONFIG_FHANDLE=y
CONFIG_SRCU=y #CONFIG_NET_NS not set CONFIG_POSIX_TIMERS=y
CONFIG_TREE_SRCU=y CONFIG_TIMERFD=y CONFIG_OBJAGG=m i

@ @ e RO2 - Cost reduction

25min VS 30min Random snake
Rand dial
Incremental Clean andom radia

Defconfig snake

Defconfig radial
Full randconfig snake

Naive incremental approach Full randconfig radial

-20% -10% 0% 10% 20% 30% A40% 50%
Gain

Using Make’s incremental strategy gives negative gains

Using random configurations in radial and snake explorations, incremental

e We rely on the incremental strategy of Make that captures the dependencies to builds experience losses of -79% and -288%, while PyroBuildS mutations,
decide which parts to rebuild with both random and default configurations, limit losses to just -20%,
e We built 50 random configurations in a row without running make clean with gains of over 80%

RO3 - Diversity

B Full randconfig

-120% -100% -80% -60% -40% -20% 0% PyroBuilds defconfig
Gain PyroBuildS randconfig

o 103
-
ke
5 107
. . O
Using a Compiler Cache (Ccache) adds an overhead * o |
[4] ’) | ‘
. Ccachfe .|s a compiler ca.che that speeds up recorr?pll.atlo.n by .cachlng prev!ous O%fh; %, %, %, %%@ i Fo, %) % 5y, %0, %, %, %. %
compilations and detecting when the same compilation is being done again %%, * °© & . B T
. . . . (x
e We built 100 random configurations in a row using Ccache G‘%,?
Subsystem
2004 —— Incremental Build
Clean build h PyroBuildS covers 14/18 of Linux’s subsystems and 33% of the options

150 - covered by randconfigs.

55100
. /\f\ﬁ\j /\ ! We described PyroBuildS, our new approach to incrementally explore the (very large)
o configuration space of Linux, showing that appropriate exploration strategies trigger
Configurations synergies with these caching capabilities of Make.
Overall, mutation-based builds (1) provide a tradeoff between diversity, build time,
References and correctness; (2) are an interesting complement to random configurations.

[1] Georges Aaron Randrianaina, Djamel Eddine Khelladi, Olivier Zendra, and Mathieu Acher. Towards Incremental Build of Software Configurations. ICSE’22, NIER

[2] Georges Aaron Randrianaina, Xhevahire Térnava, Djamel Eddine Khelladi, and Mathieu Acher. On the Benefits and Limits of Incremental Build of Software Configurations: An
Exploratory Study. ICSE’22

[3] Georges Aaron Randrianaina. Incremental Build of Linux Kernel Configurations. In EuroDW’22

[5] ccache.dev

Made with Emacs, BTEX and TikZ

