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MY MAIN RESEARCH TOPICS

• Software analytics

• Software evolution

• Recommender systems for software engineers

• DevOps



MY TEACHING

• Advanced software engineering (Master)

• Video game development (Master)

• Natural language processing (Bachelor)



HOW MY SOFTWARE ENGINEERING 
TEACHING USED TO BE

Master course, so students know already about topics such as

• Analysis and design

• (Some) software configuration management and continuous 
integration



WHAT’S LEFT?



MY (OLD) COURSE GOALS

• Provide advanced software engineering contents mostly focused on 
software quality

• Stimulate workgroup

• Stimulate investigation on innovative topics



IN THE MEANTIME… HOW IS SOFTWARE 
ENGINEERING CHANGING?



ICSE 2023 submitted/accepted papers by topic 
(top 20)



ICSE 2023 accepted papers at a glance



THE RISE OF DEEP LEARNING 
APPLICATIONS TO SE…



BETTER HARDWARE…



MORE DATA…



MORE (CURATED) DATA

• Torrents, e.g., GitTorrent, SOTorrent, TravisTorrent

• Initiatives like World of Code

• Increase of sharing (large) datasets with papers

• Publication reward for dataset and reproducibility



PRETRAINED MODELS

• SE researchers can focus on 

• Relatively small fine tuning from problem specific data

• No need to bother with large, expensive model training

• ICSE 2023 had a full session on this



APPLICATION EXAMPLES…
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH XXXX 1

An Empirical Study on the Usage of Transformer
Models for Code Completion

Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Antonio Mastropaolo, Emad Aghajani,
Denys Poshyvanyk, Massimiliano Di Penta, and Gabriele Bavota

Abstract—Code completion aims at speeding up code writing by predicting the next code token(s) the developer is likely to write. Works
in this field focused on improving the accuracy of the generated predictions, with substantial leaps forward made possible by deep
learning (DL) models. However, code completion techniques are mostly evaluated in the scenario of predicting the next token to type,
with few exceptions pushing the boundaries to the prediction of an entire code statement. Thus, little is known about the performance of
state-of-the-art code completion approaches in more challenging scenarios in which, for example, an entire code block must be generated.
We present a large-scale study exploring the capabilities of state-of-the-art Transformer-based models in supporting code completion at
different granularity levels, including single tokens, one or multiple entire statements, up to entire code blocks (e.g., the iterated block
of a for loop). We experimented with several variants of two recently proposed Transformer-based models, namely RoBERTa and the
Text-To-Text Transfer Transformer (T5), for the task of code completion. The achieved results show that Transformer-based models, and in
particular the T5, represent a viable solution for code completion, with perfect predictions ranging from ⇠29%, obtained when asking the
model to guess entire blocks, up to ⇠69%, reached in the simpler scenario of few tokens masked from the same code statement.

Index Terms—Code Completion, Deep Learning, Empirical Software Engineering
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1 INTRODUCTION

Code completion is considered as one of the “killer” fea-
tures of modern Integrated Development Environments
(IDEs) [18], [49], [72]: It can provide developers with pre-
dictions about the next code token (e.g., a method call)
to write given the code already written in the IDE, thus
speeding up software development and preventing potential
mistakes [33], [35].

Several works in this field have been proposed. Most
of them aim at advancing the performance of code comple-
tion tools, especially in terms of prediction accuracy. Such
research has allowed moving from simple alphabetically
ranked lists of recommendations for completing what a
developer is typing (e.g., a list of possible method calls match-
ing what has been typed by the developer) to “intelligent”
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completions considering the context surrounding the code
[18], [72], the history of code changes [72], and/or coding
patterns mined from software repositories [10], [36], [39],
[62], [63], [65], [77]. Last, but not least, Deep Learning (DL)
models have been applied to code completion [8], [22], [47],
[49], [73], [84], setting new standards in terms of prediction
performance. Although the performance of code completion
techniques has substantially improved over time, the type
of support they provide to developers has not evolved
at the same pace. Indeed, besides a few works focusing
on predicting multiple code tokens (e.g., [8], [73]) or even
recommending entire statements (e.g., [11], [83]), most of
the approaches presented in the literature have only been
experimented in the specific scenario in which the next token
the developer is likely to type must be predicted. This leaves
the following question partially unanswered: how far can we
go with DL-based token prediction (even beyond the source code
line boundary)?

We present a large-scale empirical study exploring the
limits and capabilities of state-of-the-art DL models to sup-
port code completion. Besides generating the next token(s)
the developer is likely to write, we apply DL models to
generate entire statements and code blocks (e.g., the body
of an if statement). Among the many DL models proposed
in the literature, we focus on models using the Transformer
architecture [81]. In particular, in our recent work published
at MSR 2021 [22] we evaluated the performance of a RoBERTa
model [55] in the code completion tasks described above.
RoBERTa is a BERT (Bidirectional Encoder Representations
from Transformers) model [24] using a pre-training task in
which random words in the input sentences are masked out
using a special <MASK> token, with the model in charge of
predicting the masked words. While experimenting with
RoBERTa for the task of code completion, we faced an
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Neural Transfer Learning for Repairing

Security Vulnerabilities in C Code

Zimin Chen, Steve Kommrusch, and Martin Monperrus

Abstract—In this paper, we address the problem of automatic repair of software vulnerabilities with deep learning. The major problem

with data-driven vulnerability repair is that the few existing datasets of known confirmed vulnerabilities consist of only a few thousand

examples. However, training a deep learning model often requires hundreds of thousands of examples. In this work, we leverage the

intuition that the bug fixing task and the vulnerability fixing task are related and that the knowledge learned from bug fixes can be

transferred to fixing vulnerabilities. In the machine learning community, this technique is called transfer learning. In this paper, we

propose an approach for repairing security vulnerabilities named VRepair which is based on transfer learning. VRepair is first trained

on a large bug fix corpus and is then tuned on a vulnerability fix dataset, which is an order of magnitude smaller. In our experiments,

we show that a model trained only on a bug fix corpus can already fix some vulnerabilities. Then, we demonstrate that transfer learning

improves the ability to repair vulnerable C functions. We also show that the transfer learning model performs better than a model

trained with a denoising task and fine-tuned on the vulnerability fixing task. To sum up, this paper shows that transfer learning works

well for repairing security vulnerabilities in C compared to learning on a small dataset.

Index Terms—vulnerability fixing, transfer learning, seq2seq learning.
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1 INTRODUCTION

ON the code hosting platform GitHub, the number of
newly created code repositories has increased by 35%

in 2020 compared to 2019, reaching 60 million new repos-
itories during 2020 [1]. This is a concern to security since
the number of software security vulnerabilities is correlated
with the size of the software [2]. Perhaps worryingly, the
number of software vulnerabilities is indeed constantly
growing [3]. Manually fixing all these vulnerabilities is a
time-consuming task; the GitHub 2020 security report finds
that it takes 4.4 weeks to release a fix after a vulnerability
is identified [4]. Therefore, researchers have proposed ap-
proaches to automatically fix these vulnerabilities [5], [6].

In the realm of automatic vulnerability fixing [7], there
are only a few works on using neural networks and deep
learning techniques. One of the reasons is that deep learning
models depend on acquiring a massive amount of training
data [8], while the amount of confirmed and curated vul-
nerabilities remains small. Consider the recent related work
Vurle [9], where the model is trained and evaluated on a
dataset of 279 manually identified vulnerabilities. On the
other hand, training neural models for a translation task
(English to French) has been done using over 41 million
sentence pairs [10]. Another example is the popular summa-
rization dataset CNN-DM [11] that contains 300 thousand
text pairs. Li et al. showed that the knowledge learned from
a small dataset is unreliable and imprecise [12]. Schmidt et
al. found that the error of a model predicting the thermody-
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namic stability of solids decreases with the size of training
data [13]. We argue that learning from a small dataset of
vulnerabilities suffers from the same problems (and will
provide empirical evidence later).

In this paper, we address the problem that vulnerability
fix datasets are too small to be meaningfully used in a deep-
learning model. Our key intuition to mitigate the problem is
to use transfer learning. Transfer learning is a technique to
transfer knowledge learned from one domain to solve prob-
lems in related domains, and it is often used to mitigate the
problem of small datasets [14]. We leverage the similarity
of two related software development tasks: bug fixing and
vulnerability fixing. In this context, transfer learning means
acquiring generic knowledge from a large bug fixing dataset
and then transferring the learned knowledge from the bug
fixing task to the vulnerability fixing task by tuning it on a
smaller vulnerability fixing dataset. We realize this vision in
a novel system for automatically repairing C vulnerabilities
called VRepair.

To train VRepair, we create a sizeable bug fixing dataset,
large enough to be amenable to deep learning. We create
this dataset by collecting and analyzing all 892 million
GitHub events that happened between 2017-01-01 and 2018-
12-31 and using a heuristic technique to extract all bug fix
commits. In this way, we obtain a novel dataset consisting
of over 21 million bug fixing commits in C code. We use this
data to first train VRepair on the task of bug fixing. Next,
we use two datasets of vulnerability fixes from previous re-
search, called Big-Vul [15] and CVEfixes [16]. We tune VRe-
pair on the vulnerability fixing task based on both datasets.
Our experimental results show that the bug fixing task can
be used to train a model meant for vulnerability fixing; the
model trained only on the collected bug fix corpus achieves
18.24% accuracy on Big-Vul and 15.98% on CVEfixes, which
validates our initial intuition that these tasks are profoundly
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ABSTRACT
Code review is a practice widely adopted in open source and in-
dustrial projects. Given the non-negligible cost of such a process,
researchers started investigating the possibility of automating spe-
ci�c code review tasks. We recently proposed Deep Learning (DL)
models targeting the automation of two tasks: the �rst model takes
as input a code submitted for review and implements in it changes
likely to be recommended by a reviewer; the second takes as input
the submitted code and a reviewer comment posted in natural lan-
guage and automatically implements the change required by the
reviewer. While the preliminary results we achieved are encour-
aging, both models had been tested in rather simple code review
scenarios, substantially simplifying the targeted problem. This was
also due to the choices we made when designing both the tech-
nique and the experiments. In this paper, we build on top of that
work by demonstrating that a pre-trained Text-To-Text Transfer
Transformer (T5) model can outperform previous DL models for
automating code review tasks. Also, we conducted our experiments
on a larger and more realistic (and challenging) dataset of code
review activities.

KEYWORDS
Code Review, Empirical Study, Machine Learning on Code

1 INTRODUCTION
The bene�ts of code reviews have been widely recognized, with
several studies providing evidence of the higher quality of reviewed
code [15, 29, 31]. Also, code reviews help in preventing bugs and
foster knowledge transfer among developers [10, 40]. However,
studies on code reviews also highlighted an additional cost that such
a process entails: Empirical evidence suggests that large software
projects can undergo hundreds of code reviews per month. This
applies to both open-source (e.g., ⇠500 reviews per month in Linux
[39]) and industrial (e.g., ⇠3k reviews per month in Microsoft Bing
[38]) projects. As a result, developers can spend many hours per
week reviewing code [16].

Given the non-negligible cost of code review, we recently pro-
posed the automation of speci�c code review tasks: The goal is not
to replace developers, but to help them save time in two scenarios.
The �rst is that of a contributor (i.e., the developer submitting the
code for review) who wants to receive a rapid feedback about the
code they wrote before submitting it for review. The feedback is
provided by a Deep Learning (DL) model trained to take as input
the code to submit for review ⇠B and provide as output a revised
version of⇠B (i.e.,⇠A ) implementing code changes that are likely to
be recommended by a reviewer.

The second scenario concerns the reviewer(s) involved in the
process: a DL model is trained to take as input (i) the code ⇠B
submitted for review, and (ii) a comment'=; written by the reviewer
in natural language to request a speci�c change on ⇠B . The output
of the model is a revised version of ⇠B (i.e., ⇠A ) implementing the
changes recommended in '=; . The idea here is that the reviewer can
use the model to provide the contributor with a concrete example
of the code changes that they would like to see implemented.

In our previous work [46] we trained and experimented with
the DL models on a dataset composed of ⇠17k triplets h⇠B , '=; ,⇠A i
extracted from code reviews performed in GitHub [2] and Gerrit
[1]. In particular, the model recommending code changes to the
contributor is an encoder-decoder model with one encoder taking
⇠B as input and one decoder generating ⇠A . Our evaluation shows
that this model can recommend a change as a reviewer would do in
3% (single prediction) to 16% of the cases (10 di�erent predictions).
The model employed in the second scenario (i.e., the automated
implementation of a comment recommended by the reviewer), has
instead two encoders taking as input ⇠B and '=; , respectively, and
one decoder generating⇠A . This model can successfully implement
a change recommended by a reviewer in 12% (single prediction) to
31% (10 di�erent predictions) of the cases.

While these results represent our �rst step towards automat-
ing code review tasks, our approach [46] as well as the conducted
empirical study su�ers of several limitations we try to overcome
in this paper. First, we adopted a code abstraction process to re-
duce the vocabulary size and simplify the learning of the DL model.
This means that the model did not work on the raw source code,
but on an abstracted version of it in which, for example, variable
identi�ers were replaced with a special VAR_ID token, where ID
is a progressive number (e.g., the second declared variable is rep-
resented by VAR_2). The possibility to go back to raw source code
was guaranteed by keeping a map linking abstracted to raw tokens
in ⇠B (e.g., VAR_1 ! i).
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ABSTRACT
The existing deep learning (DL)-based automated program repair
(APR) models are limited in �xing general software defects. We
present DEAR, a DL-based approach that supports �xing for the
general bugs that require dependent changes at once to one or mul-
tiple consecutive statements in one or multiple hunks of code. We
�rst design a novel fault localization (FL) technique for multi-hunk,
multi-statement �xes that combines traditional spectrum-based (SB)
FL with deep learning and data-�ow analysis. It takes the buggy
statements returned by the SBFL model, detects the buggy hunks
to be �xed at once, and expands a buggy statement B in a hunk to
include other suspicious statements around B . We design a two-tier,
tree-based LSTM model that incorporates cycle training and uses a
divide-and-conquer strategy to learn proper code transformations
for �xing multiple statements in the suitable �xing context consist-
ing of surrounding subtrees. We conducted several experiments to
evaluate DEAR on three datasets: Defects4J (395 bugs), BigFix (+26k
bugs), and CPatMiner (+44k bugs). On Defects4J dataset, DEAR
outperforms the baselines from 42%–683% in terms of the number
of auto-�xed bugs with only the top-1 patches. On BigFix dataset,
it �xes 31–145 more bugs than existing DL-based APR models with
the top-1 patches. On CPatMiner dataset, among 667 �xed bugs,
there are 169 (25.3%) multi-hunk/multi-statement bugs. DEAR �xes
71 and 164 more bugs, including 52 and 61 more multi-hunk/multi-
statement bugs, than the state-of-the-art, DL-based APR models.

CCS CONCEPTS
• Software and its engineering! Softwaremaintenance tools.
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1 INTRODUCTION
Researchers have proposed several approaches to help developers
in automatically identifying and �xing the defects in software. Such
approaches are referred to as automated program repair (APR). The
APR approaches have been leveraging various techniques in the
areas of search-based software engineering, software mining,machine
learning (ML), and deep learning (DL).

For search-based approaches [9, 10, 24, 30], a search strategy is per-
formed in the space of potential solutions produced by mutating the
buggy code via operators. Other approaches use software mining to
mine and learn �xing patterns from prior bug �xes [15, 17, 19, 20, 27]
or similar code [28, 32]. Fixing patterns are at the source code level
[19, 20] or at the change level [13, 16, 40].Machine learning has been
used to mine �xing patterns and the candidate �xes are ranked ac-
cording to their likelihoods [21, 22, 33]. While some DL-based APR
approaches learn similar �xes [11, 41, 42], other ones use machine
translation or neural network models with various code abstrac-
tions to generate patches [5, 6, 12, 18, 35, 38, 39].

Despite their successes, the state-of-the-art DL-based APR ap-
proaches are still limited in �xing the general defects, which involve
the �xing changes to multiple statements in the same or di�erent
parts of a �le or di�erent �les (which are referred to as hunks). None
of existing DL-based approaches can automatically �x the bug(s)
with dependent changes to multiple statements in multiple hunks
at once. They supports �xing only individual statements. If we use
such a tool on the current statement, the tool treats that statement
as incorrect and treats the other statements as correct. This does
not hold since to �x the current statement, the remaining un�xed
statements must not be treated as correct code. Thus, it might be in-
accurate when using existing DL-based APR tools to �x individual
statements for multi-hunk/multi-statement bugs. While DL pro-
vides bene�ts for �x learning, this limitation makes the DL-based
APR approaches less capable than the other directions (search-based
and pattern-based APR), which support multiple-statement �xes.

In this paper, we aim to advance deep learning-based APR by in-
troducing DEAR, a DL-based model that supports �xing for the
general bugs with dependent changes at once to one or multiple buggy
statements belonging to one or multiple buggy hunks of code. To do
that, we make the following key technical contributions.

First, we develop a fault localization (FL) technique for multi-hunk,
multi-statement bugs that combines traditional spectrum-based FL
(SBFL) with DL and data-�ow analysis.DEAR uses a SBFL method to
identify the ranked list of suspicious buggy statements. Then, it uses
that list of buggy statements to derive the buggy hunks that need
to be �xed together by �ne-tuning the pre-trained BERT model [8],
to learn the �xing-together relationships among statements. We
also design an expansion algorithm that takes a buggy statement
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SURVEYS IN THE AREA
Large Language Models for So�ware Engineering: A
Systematic Literature Review
XINYI HOU∗, Huazhong University of Science and Technology, China
YANJIE ZHAO∗,Monash University, Australia
YUE LIU,Monash University, Australia
ZHOU YANG, Singapore Management University, Singapore
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LI LI, Beihang University, China
XIAPU LUO, The Hong Kong Polytechnic University, China
DAVID LO, Singapore Management University, Singapore
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Large Language Models (LLMs) have signi�cantly impacted numerous domains, including Software Engi-
neering (SE). Many recent publications have explored LLMs applied to various SE tasks. Nevertheless, a
comprehensive understanding of the application, e�ects, and possible limitations of LLMs on SE is still in its
early stages. To bridge this gap, we conducted a systematic literature review on LLM4SE, with a particular
focus on understanding how LLMs can be exploited to optimize processes and outcomes. We collect and
analyze 229 research papers from 2017 to 2023 to answer four key research questions (RQs). In RQ1, we
categorize di�erent LLMs that have been employed in SE tasks, characterizing their distinctive features and
uses. In RQ2, we analyze the methods used in data collection, preprocessing, and application highlighting
the role of well-curated datasets for successful LLM for SE implementation. RQ3 investigates the strategies
employed to optimize and evaluate the performance of LLMs in SE. Finally, RQ4 examines the speci�c SE
tasks where LLMs have shown success to date, illustrating their practical contributions to the �eld. From the
answers to these RQs, we discuss the current state-of-the-art and trends, identifying gaps in existing research,
and �agging promising areas for future study.

CCS Concepts: • General and reference ! Surveys and overviews; • Software and its engineering !
Software development techniques; • Computing methodologies! Arti�cial intelligence.

Additional Key Words and Phrases: Software Engineering, Large Language Model, Survey
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Abstract—This paper provides a survey of the emerging area
of Large Language Models (LLMs) for Software Engineering
(SE). It also sets out open research challenges for the application
of LLMs to technical problems faced by software engineers.
LLMs’ emergent properties bring novelty and creativity with
applications right across the spectrum of Software Engineering
activities including coding, design, requirements, repair, refac-
toring, performance improvement, documentation and analytics.
However, these very same emergent properties also pose signif-
icant technical challenges; we need techniques that can reliably
weed out incorrect solutions, such as hallucinations. Our survey
reveals the pivotal role that hybrid techniques (traditional SE
plus LLMs) have to play in the development and deployment of
reliable, efficient and effective LLM-based SE.

Index Terms—Automated Program Repair, Design, Documen-
tation generation, Generative AI, Genetic Improvement, Human-
Computer Interaction, Large Language Models, Refactoring,
Requirements engineering, Search Based Software Engineering
(SBSE), Software Analytics, Software Engineering Education,
Software Processes, Software Maintenance and Evolution, Soft-
ware Testing.

I. INTRODUCTION

This paper surveys the recent developments, advances and
empirical results on LLM-based SE; the application of Large
Language Models (LLMs) to Software Engineering (SE) ap-
plications. We use the survey to highlight gaps in this rapidly
developing, but as yet embryonic, research literature. Based
on gaps in the literature and technical opportunities, we
also identify open problems and challenges for the software
engineering research community.

While any survey of such a rapidly expanding area can
neither aspire nor claim to be comprehensive, we hope that this
survey will provide a useful and relatively complete snapshot
of the early universe of this exciting new subdiscipline of
Software Engineering: LLM-based Software Engineering. Al-
though the scientific and technical structure of the field is still
emerging, it is already possible to identify trends, productive
avenues for future research, and important technical challenges
that need to be addressed. In particular, we are already able to
discern important connections to (and resonance with) existing

trends and well-established approaches and subdisciplines
within Software Engineering.

Although, overall, we find considerable grounds for opti-
mism, there remain important technical challenges, which are
likely to inform the research agenda for several years. Many
authors have highlighted, both scientifically and anecdotally,
that hallucination is a pervasive problem for LLMs [1] and
also that it poses specific problems for LLM-based SE [2].
As with human intelligence, hallucination means that the
LLM can create fictitious output. In the context of software
engineering, it means that the engineering artefacts created
could be incorrect, yet appear plausible; LLMs may introduce
bugs.

However, unlike many other applications of LLMs, software
engineers are typically blessed with automatable ground truth
(software execution), against which most software engineering
artefacts can be evaluated. Also, the software engineering
research community has already devoted a great deal of time
to producing automated and semi-automated techniques for
checking the potentially incorrect results produced by humans.
This means that, for the discipline and the research community,
there is a great deal of experience and expertise on which
to draw, when tackling the challenges posed by issues like
hallucination.

Clearly, automated testing techniques [3]–[5] will have a
central role to play in ensuring correctness, just as they already
do for human-engineered artefacts. When generating entirely
new features and systems, automated test data generation
suffers from the lack of an automatable oracle [6] (an au-
tomated technique for determining whether output behaviour
is correct for a given input stimulus). Given LLMs’ propensity
to hallucinate, the Oracle Problem will remain highly relevant,
and solutions to it will become all the more impactful.

However, some SE applications concern adaption, improve-
ment and development of existing software systems, for which
there is a readily-available automatable oracle: the functional
behaviour of the original system. In this paper, we call this the
‘Automated Regression Oracle’, an approach that has already

1
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…EVERYTHING 
SEEMS TO GO SO WELL…

• Better solutions to problems handled already

• Ability to solve problems not considered in the past



NOVEMBER 30, 2022…





CODE GENERATION…



PROGRAM REPAIR…



VULNERABILITY 
ASSESSMENT…



CODE REVIEW…

Note: this was my own implementation of the SZZ 
algorithm



…AND EVEN MORE…



EACH OF US HAS SURELY TRIED IT FOR 
MANY OTHER TASKS…

• Code completion

• Test generation

• Program translation and refactoring

• Software design and modeling

• ….





LLMS ARE INFLUENCING RESEARCH…

Novel approaches contribute by leveraging:

• Prompt tuning and chaining

• Hybrid models (e.g., Retrieval Augmented Generation)



PROMPT-TUNING IN SE

• Pretrained models may 
originate from different 
types of knowledge, e.g. 
natural language

• Prompting reintroduce 
such elements during 
fine-tuning 
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ABSTRACT
Pre-trained models have been shown e�ective in many code intelli-
gence tasks. These models are pre-trained on large-scale unlabeled
corpus and then �ne-tuned in downstream tasks. However, as the
inputs to pre-training and downstream tasks are in di�erent forms,
it is hard to fully explore the knowledge of pre-trained models. Be-
sides, the performance of �ne-tuning strongly relies on the amount
of downstream data, while in practice, the scenarios with scarce
data are common. Recent studies in the natural language processing
(NLP) �eld show that prompt tuning, a new paradigm for tuning,
alleviates the above issues and achieves promising results in various
NLP tasks. In prompt tuning, the prompts inserted during tuning
provide task-speci�c knowledge, which is especially bene�cial for
tasks with relatively scarce data. In this paper, we empirically eval-
uate the usage and e�ect of prompt tuning in code intelligence
tasks. We conduct prompt tuning on popular pre-trained models
CodeBERT and CodeT5 and experiment with three code intelli-
gence tasks including defect prediction, code summarization, and
code translation. Our experimental results show that prompt tuning
consistently outperforms �ne-tuning in all three tasks. In addition,
prompt tuning shows great potential in low-resource scenarios, e.g.,
improving the BLEU scores of �ne-tuning by more than 26% on
average for code summarization. Our results suggest that instead
of �ne-tuning, we could adapt prompt tuning for code intelligence
tasks to achieve better performance, especially when lacking task-
speci�c data.

CCS CONCEPTS
• Software and its engineering! Software development tech-
niques;
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1 INTRODUCTION
Code intelligence leverages machine learning, especially deep learn-
ing (DL) techniques to mine knowledge from large-scale code cor-
pus and build intelligent models for improving the productivity of
computer programming. The state-of-the-art DL-based approaches
to code intelligence exploit the pre-training and �netuning para-
digm [1, 9, 14, 21, 56], in which languagemodels are �rst pre-trained
on a large unlabeled text corpora and then �netuned on downstream
tasks. For instance, Feng et al. [9] propose CodeBERT, a pre-trained
language model for source code, which leverages both texts and
code in the pre-training process. To facilitate generation tasks for
source code, Wang et al. [56] propose a pre-trained sequence-
to-sequence model named CodeT5. These pre-trained source code
models achieve signi�cant improvement over previous approaches.

However, there exist gaps between the pre-training and �ne-
tuning process of these pre-trained models. As shown in Figure 1(a),
pre-training models such as CodeBERT [9] and CodeT5 [56] are
generally pre-trained using the Masked Language Modeling (MLM)
objective. The input to MLM is a mixture of code snippets and natu-
ral language texts, and the models are trained to predict randomly-
masked input tokens. However, when models are �ne-tuned into
the downstream tasks, e.g. defect detection, the input involves only
source code and the training objective changes to a classi�cation
problem. As shown in Figure 1(b), the pre-trained model represents
each input code snippet using a classi�cation head (CLS Head)
and �ne-tunes the CLS head based on a task-speci�c dataset. The
inconsistent inputs and objectives between pre-training and �ne-
tuning render the knowledge of pre-trained models hard to be fully
explored, leading to sub-optimal results for downstream tasks. Be-
sides, the performance of �ne-tuning largely depends on the scale
of downstream data [13, 16, 25, 59].
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IMPACT ON SE EDUCATION

Favor a responsible, informed integration of LLMs in the software 
development process



FROM INTERACTING 
WITH STACK OVERFLOW…



TOWARD INTERACTING WITH LLMS…



INSTRUCT STUDENTS 
ABOUT POTENTIALS

• Applications beyond obtaining code snippets

• Code review, refactoring, program repair, test generation, 
documentation generation

• Tutorials on prompt engineering and prompt chaining



• Lack of trust

• Intellectual property 
problems

• Hallucination



LACK OF TRUST
• Without having a source for the recommended code we can’t trust it

• This is therefore very different from conventional reuse

• We need to define suitable code review procedure for AI-generated 
software

• Different from conventional code review as there’s no human 
developer to interact with



INTELLECTUAL PROPERTY ISSUES

https://www.reuters.com/legal/lawsuit-says-openai-violated-us-authors-copyrights-train-ai-chatbot-2023-06-29/



CONSEQUENCES WITH SOFTWARE 
DEVELOPMENT

• Again no traceability to recommended code

• Even if the LLM were trained with open source code with permissive 
licenses, lack of attribution remains a serious violation



IF I ASK CHATGPT SOME CODE…



…IT HAS NO CLUE ABOUT THE LICENSE!



WHAT ABOUT 
SOFTWARE BILLS OF MATERIALS?



the United States Government brought SBOMs to the forefront of digital policy



ABOUT CODE REVIEW
• Chicken and egg problem

• LLM can review your code, but YOU should review LLM code

• Again, lack of trust

• No interaction with a human, maybe with the LLM?

• Different reviewing standards than with (expert) developers?



ALSO…

• Keep track of the 
LLM prompt 
chaiining and logs

• Possibly, using the 
issue tracker



…AND WE SHOULD BE AWARE ON 
HOW OUR STUDENTS CONDUCT 

LITERATURE REVIEW…



AN EMAIL I RECEIVED SOME WEEKS AGO…
Dear Professor Bavota, professor Di Penta, professor Rocco,

I hope this message finds you well. I am a second-year master's student at the University of XXX, specializing in software engineering. I am 
writing to request your assistance in locating one of your publications that is relevant to my master's thesis topic.

In my literature review, I came across a citation of your work titled Automated "Graph-Based Integration Testing of Web Applications". which is 
crucial for my research. However, despite my efforts, I have been unable to find this publication in our university's library or online databases.

All the information I was given about this publication are the following:

Bavota, G., Di Penta, M., & Oliveto, R. (2013). Graph-Based Integration Testing of Web Applications. Proceedings of the 2013 International 
Conference on Software Engineering, 1007–1010. https://doi.org/10.1109/ICSE.2013.6606665

I would greatly appreciate it if you could direct me to the source of this publication or share an electronic copy if available. Your guidance and 
expertise would significantly benefit my research.

Thank you for considering my request. I look forward to your response.

Best regards,
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