
Submission to the Informatics Europe 2011 Curriculum Best Practices Award: Parallelism and Concurrency

Teaching High Performance Computing to scientists and engineers:
A model-based approach

Dr. Georg Hager1, Prof. Dr. Gerhard Wellein1,2, Dr.-Ing. Jan Treibig1

1Erlangen Regional Computing Center (RRZE)
Friedrich-Alexander University of Erlangen-Nuremberg
Martensstraße 1
91058 Erlangen, Germany

2Department of Computer Science
Friedrich-Alexander University of Erlangen-Nuremberg
Martensstraße 3
91058 Erlangen, Germany

{georg.hager,gerhard.wellein,jan.treibig}@rrze.uni-erlangen.de

The authors submit on behalf of the HPC Services group at Erlangen Regional Computing
Center (RRZE)

Abstract

Over the past ten years we have developed a course called “Programming Techniques for Supercomputers,”
whose aim is to make students of computational sciences and engineering familiar with the concepts and
dominant programming paradigms of high performance computing (HPC). We believe that working in a
scientific computing center for more than a decade and helping scientists to optimize and parallelize their
application codes has endowed us with a unique view and deep understanding of the relevant issues in this
field.

For a long time, parallelism on the application level was all but absent from computer science and related
curricula. Students had no solid understanding about the relevant performance-limiting aspects of modern
computer systems, and how to write code that makes good use of the architecture. Hence, optimization efforts
were often “shots in the dark” without proper guidance and no concept of how fast an application could
potentially run.

Our teaching concept begins with a coverage of modern computer architecture, as far as it is relevant for parallel
applications in HPC. From the start we put a strong emphasis on architectural features that may have an impact
on performance - qualitatively and also quantitatively. Pipeline stalls, latency and bandwidth bottlenecks,
interconnect topologies in shared and distributed memory parallel computers, and the particular properties of
modern multicore processors are treated in depth. Bandwidth-based performance models are used extensively to
predict the performance of loop kernels and identify sensible optimization efforts. Simple performance tools that
provide a manageable level of details and thus are useful to application programmers are presented. We then turn
to parallelism on a theoretical level: Basic scalability models and appropriate refinements are used to develop a
quantitative understanding of the limits of parallelism. Finally we give introductions into the dominant
programming paradigms in scientific computing, OpenMP and MPI, and their specific optimization potentials.
We close with a coverage of hybrid MPI+OpenMP programming and its possible performance implications.

Starting from the lecture, for which materials (slides, problems, solutions) can be found in our online learning
management system, we have developed four follow-up branches that took up the concept and developed it
further for a wider audience:

• A series of tutorials, which have been successful and well-attended at various conferences (SC10,
PPoPP11, ISC10). Some of the material has also been part of tutorials organized by our scientific
collaborators.

• A textbook, "Introduction to High Performance Computing for Scientists and Engineers" (CRC Press,
ISBN13 978-1439811924), which has been adopted by various lectures and courses, and is generally
well received in the HPC community. Apart from the main text it also contains many problems with
solutions, and an extensive bibliography for further reading. An annotated version of the bibliography
(containing, e.g., all abstracts) is also available on the web.

• Industry collaborations, which have emerged naturally out of the increased visibility due to our other
activities. This has also led to an interesting extension of scope into fields not directly connected to
classic numerical simulation, like medical applications and reactor physics. We have also noticed that
there is an urgent need in industry for HPC training, which often cannot be satisfied by internal
company resources.

• A spin-off company, "Likwid High Performance Programming," which offers commercial HPC
consulting, training, and services to companies outside the academic sector.

In conclusion, our concept of teaching parallel computing with a strong focus on performance limitations and
useful models has made a measurable difference within and beyond our institution, and is – to our knowledge –
unique in the HPC community.

1 Description of the achievements

1.1 Lecture “Programming Techniques for Supercomputers” (PTfS)

The aim of the PTFS lecture is to make students of computational sciences and engineering familiar with the
concepts and dominant programming paradigms of high performance computing (HPC). The format of the one
term course is two 90-minute lectures plus one 90-minute tutorial per week. To get the full 7.5 ECTS credits,
students are required to score at least 50% of the tutorial credits, and they have to pass an oral exam.

The current trends in computer architecture no longer allow us to separate code optimization from
parallelization. Doing both together and in a structured way will be of vital importance for many software areas
in the years to come; hence, the lecture treats efficient serial code and parallel programming techniques as
complementary concepts, and on an equal footing. It starts with a short introduction to current supercomputer
systems and the basics of correct benchmarking. Then we provide a survey of modern computer architecture, as
far as it is relevant for parallel applications in HPC. Traditional courses on computer architecture in computer
science curricula are often unsuitable for the computational scientist, since the relevant features that determine
application performance are obscured by theoretical ballast. In contrast to that, we put a strong emphasis on
features that may have an impact on performance – qualitatively and also quantitatively: Pipeline stalls, latency
and bandwidth bottlenecks, the properties of modern multicore processors, and interconnect topologies in shared
and distributed memory parallel computers are treated in depth. At every stage we try to pinpoint the
performance-limiting aspects of each particular architectural feature. Bandwidth-based performance models are
used extensively to predict the performance of loop kernels and identify sensible optimization efforts. We always
try to make clear that “shot-in-the-dark” optimizations, i.e., code changes that are not guided by a clear
understanding of what speedup could potentially be achieved, are second-rate optimizations. Our experience
with programmers who put large efforts into code restructuring only to find out that their application was already
limited by the architecture brought us to the conclusion that this way of thinking about optimization is
desperately needed and must be taught to students from the start.

We then turn to parallelism on a theoretical level: Basic scalability models and appropriate refinements are used
to develop a quantitative understanding of the limits of parallelism. In particular, we extend the standard
discussion of Amdahl’s and Gustafson’s Laws by incorporating the influence of communication overhead, and
describe what mathematical form the laws take for different problem classes and/or network properties. We also
derive mathematically why and how “slow computing,” i.e., the use of relatively slow and low-power processor
and system technology in large-scale parallel systems, can lead to scalability and also performance advantages
compared to standard clusters. Typical mistakes and misconceptions with preparing and presenting parallel
performance data are addressed in due detail.

Finally we give introductions into the dominant programming paradigms in scientific computing, OpenMP and
MPI, and optimization potentials that are specific to either approach. In both cases, the performance discussion is
again closely connected with computer architecture. E.g., students are made aware of the influence on multicore
topology (the actual arrangement of cores with respect to the resources they share, like caches and memory

interfaces) on parallel performance, and of which actions must be taken to ensure that threads and processes are
bound to hardware resources to best avoid bottlenecks. We dedicate ample time to explaining the impact of
ccNUMA architecture on the performance of memory-bound code, and which programming measures can avoid
the typical nonlocality and contention problems. Although we still consider GPGPU computing to be in a state of
flux with regard to long-term availability of hardware and software solutions, we also give an introduction into
the architecture of GPUs, as far as it is relevant for HPC, and the CUDA framework.

We close with a discussion of hybrid MPI+OpenMP programming and its possible performance implications.
Numerous misconceptions exist about hybrid programming even on this ostensibly simple level, and many
publications still approach the subject in an incoherent and even dilettantish way. After explaining the basic
features of using MPI with threaded processes we introduce the concepts of “vector mode” vs. “task mode”
hybrid programming and how the latter may be employed to reliably implement truly asynchronous
communication. Finally we provide a survey of possible pros and cons of MPI+OpenMP programming in
different application scenarios, and put a strong emphasis on the concept that a well-scalable MPI-only code that
behaves in accordance with a suitable performance model is not a candidate for hybrid parallelization.

Owing to the complexity and depth of the material, some of the more peripheral topics are treated in the tutorials.
Students are often required to pinpoint or solve a specific performance problem, but we also cover correctness
issues in OpenMP and MPI code. A strong emphasis is put on correct benchmarking, and we try to convey all
necessary knowledge needed for writing the most efficient low-level code possible.

1.2 Other teaching activities

1.2.1 Multicore programming tutorial
We have developed a tutorial lecture with the title “Ingredients for good parallel performance on multicore-based
systems.” It has a typical length of 3-3.5 hours, and fits well into the fringe activities of conferences with HPC
related scope. The material mostly stays at the node level and is not just a subset of PTfS, but also contains “best
practices” and case studies we do not typically teach in the lecture. It is primarily targeted at practitioners who
want to get quickly “up to scratch” with performance issues and simple tools on current multicore hardware.
Hence, it does not usually contain hands-on sessions, but these could easily be added if required.

Contents of tutorial “Ingredients for good parallel performance on multicore-based systems:”

1 Introduction
Architecture of multisocket multicore systems
Nomenclature
Current developments
Programming models

2 Multicore performance tools
Finding out about system topology
Affinity enforcement
Performance counter measurements

3 Impact of processor/node topology on program
 performance
Bandwidth saturation effects
Programming for ccNUMA
OpenMP performance
Simultaneous multithreading (SMT)
Intranode vs. internode MPI

4 New chances with multicore hardware
Wavefront parallelization of stencil codes Explicit
overlap of computation and communication in sparse
matrix-vector multiply

Summary

Appendix

1.2.2 Compact courses and workshops
The PTfS lecture and the multicore tutorial have served as starting points for numerous other teaching activities,
especially in the form of compact courses or workshop participation. Materials are specially tailored to meet the
needs of the respective audience. The following is a list of such activities in recent years:

• Efficient multicore programming. Annual compact lecture (3-4 days) with tutorials at the Ohm University
of Applied Sciences, Nuremberg. While the scope of this course had been general parallel
programming and optimization for shared and distributed-memory systems, we have changed the focus
to multicore processors starting in 2009. (2004-2011)

• Parallel programming of high performance systems. Annual one-week course with tutorials in
collaboration with Leibniz Supercomputing Center in Garching (LRZ). The course is announced all
over Germany, and the location traditionally alternates between RRZE and LRZ. We provide access via
video conferencing for other locations, given sufficient demand. In recent years the course was
complemented by a 3-day “advanced” class covering performance tools and parallel I/O in depth.
(2000-2011)

• Efficient multithreaded programming on modern CPUs and GPUs. One-week compact course at KTH
Stockholm, March 14-18, 2011.

1.3 Textbook “Introduction to High Performance Computing for Scientists and
Engineers”

Georg Hager and Gerhard Wellein
CRC Press, ISBN 978-1439811924, 356 pages, July 2010

The textbook grew out of the PTfS lecture and two contributions to a Springer volume in the “Lecture Notes in
Physics” series [1][2], but also from our experience with scientific users who try to run and optimize their
simulation codes on the machines of RRZE and other centers. It encompasses almost the complete PTfS lecture,
but also provides some additional information, e.g., on C++ optimizations and efficient use of MPI. Apart from
the main text it contains many problems with solutions (derived and extended from the problems in earlier PTfS
tutorials), and an extensive bibliography for further reading. An annotated and updated version of the
bibliography (containing, e.g., all abstracts) and additional information about the book is also available on the
book’s Web site [3]. The book is the main accompanying text for PTfS students.

Table of contents for the book “Introduction to High Performance Computing for Scientists and Engineers:”

1 Modern Processors
Stored-program computer architecture
General-purpose cache-based microprocessor
architecture
Memory hierarchies
Multicore processors
Multithreaded processors
Vector processors

2 Basic Optimization Techniques for Serial Code
Scalar profiling
Common sense optimizations
Simple measures, large impact
The role of compilers
C++ optimizations

3 Data Access Optimization
Balance analysis and lightspeed estimates
Storage order
Case study: The Jacobi algorithm
Case study: Dense matrix transpose

Algorithm classification and access optimizations Case
study: Sparse matrix-vector multiply

4 Parallel Computers
Taxonomy of parallel computing paradigms
Shared-memory computers
Distributed-memory computers
Hierarchical (hybrid) systems
Networks

5 Basics of Parallelization
Why parallelize?
Parallelism
Parallel scalability

6 Shared-Memory Parallel Programming with
OpenMP
Short introduction to OpenMP
Case study: OpenMP-parallel Jacobi algorithm
Advanced OpenMP: Wavefront parallelization

7 Efficient OpenMP Programming
Profiling OpenMP programs

Performance pitfalls
Case study: Parallel sparse matrix-vector multiply

8 Locality Optimizations on ccNUMA
Architectures
Locality of access on ccNUMA
Case study: ccNUMA optimization of sparse MVM
Placement pitfalls
ccNUMA issues with C++

9 Distributed-Memory Parallel Programming with
MPI
Message passing
A short introduction to MPI
Example: MPI parallelization of a Jacobi solver

10 Efficient MPI Programming
MPI performance tools

Communication parameters
Synchronization, serialization, contention
Reducing communication overhead
Understanding intranode point-to-point
 communication

11 Hybrid Parallelization with MPI and OpenMP
Basic MPI/OpenMP programming models MPI taxonomy
of thread interoperability
Hybrid decomposition and mapping
Potential benefits and drawbacks of hybrid
programming

Appendix A: Topology and Affinity in Multicore
Environments

Appendix B: Solutions to the Problems

1.4 Collaboration with industry

The disruptive multi- and manycore technologies driven by Moore’s Law and the unacceptable power
consumption of chips with fast clock rates makes optimization and parallelization of code mandatory in almost
all sectors of software development. However, code efficiency and parallel programming have not been a part of
regular curricula in computer science, let alone in physics, chemistry, or even engineering. As a consequence,
software developers in the industry are facing high obstacles when trying to achieve good performance on
modern hardware. Thus it is not surprising that several companies have recently approached the HPC services
group at RRZE to discuss options for receiving support on various levels: Scientific collaborations, help with
optimization and parallelization of code, and, in particular, training.

1.5 Likwid High Performance Programming

“Likwid High Performance Programming” [4] is a spin-off company recently founded by Jan Treibig. It offers
commercial HPC consulting, training, and services to companies outside the academic sector.

It is not always possible for a university to act as a business partner in the commercial sector. Questions of
accountability, billing, and certain contract conditions that are not compatible with an academic institution leave
only a narrow scope for business activities. Likwid High Performance Programming makes it easy for the group
to offer such services. Since it is the stated goal of the university to foster the transfer of knowledge to the
commercial world, there is no problem with using training material that was prepared for academic teaching in
the context of commercial training.

2 Availability of the material to the teaching community

2.1 Teaching material

All teaching material from the PTfS lecture, i.e., lecture slides, problem assignments, and sample code, is
available via our “Moodle” learning management system (LMS) even for non-enrolled guests [5]. Solution slides
to the problems are provided on request.

The LMS is also used to conduct our other courses and workshops, notably those described in Section 1.2.2. The
conference tutorials (see Section 1.2.1) are not included here, since they do not contain a hands-on component

and are usually not longer than a day. We provide general information about the tutorials and links to the slides
on the Web [6].

We have set up a Web page for our HPC textbook [3], from which some source code from the examples in the
book can be downloaded. It also includes the list of all references from the book, including abstracts and updates,
where applicable.

2.2 LIKWID toolkit

The LIKWID toolkit [7] is a collection of lightweight tools, which have been developed by Jan Treibig. They
support programmers of multicore systems with running multithreaded code in the most efficient way and
provide feedback on performance issues using hardware counter measurements. LIKWID has recently been
incorporated into the PTfS lecture, since there has been a painful lack of performance tools that students (and
computational scientists) can actually use right away without much prior training.

3 Impact

3.1 PTfS lecture

The majority of PTfS students come traditionally from the computational engineering (CE) program at the
University of Erlangen-Nuremberg, since it is a “compulsory optional subject” in the CE syllabus. However,
there are also frequent guest students – undergraduate as well as postgraduate – from other departments like
physics, chemistry, applied mathematics, and chemical engineering.

3.2 Textbook

Our textbook has been well received in the community, and had very positive reviews from IEEE [8] and ACM
[9]. After only ten months of availability, several lectures on parallel or scientific computing list it as
recommended literature [10][11][12]. It has also been included in the list of books about supercomputing on the
Top500 Web site [13].

3.3 Tutorials and workshops

Our multicore tutorial has been presented at two international conferences so far: Supercomputing 2010 (SC10)
in New Orleans, LA, and Principles and Practice of Parallel Programming 2011 (PPoPP11) in San Antonio, TX.
Feedback forms for attendees were only available at SC10. The tutorial was well attended (about 70
participants), and 39 feedback sheets were returned. Average ratings were 4.5 overall and 4.6 for technical
content (scale from 1=poor to 5=excellent). This compares with an average overall rating of 4.2 across all SC10
tutorials.

Parts of the tutorial material have been a component of the popular “Hybrid MPI and OpenMP Parallel
Programming” tutorial by R. Rabenseifner, G. Hager, and G. Jost, which has been presented at all
Supercomputing conferences since 2007, and has received very positive feedback each year. At the International
Supercomputing Conference 2011 (ISC11) in Hamburg (June 19-23), a full-day tutorial called “Performance
oriented programming on multicore-based clusters with MPI, OpenMP, and hybrid MPI/OpenMP” has been
accepted and will be presented by G. Hager, G. Jost, J. Treibig, and G. Wellein [14]. It is in essence a fusion of
the two tutorials mentioned above.

The long-standing parallel programming course developed in collaboration with LRZ (see Sect. 1.2.2) has
continuously received strong participation from universities all over Germany, and recently also from industry.
On average, between 20 and 30 attendees visit the course.

3.4 Industry collaborations

Two relevant collaborations with industry have emerged so far out of the increased visibility of our group due to
the numerous teaching activities:

• The University of Erlangen-Nuremberg has signed a contract with the Schaeffler Group [15], a well
known supplier of the automotive industry and one of the leading manufacturers of rolling bearings.
Within the contract, the HPC Services group at RRZE supports Schaeffler in provisioning and
configuring a compute cluster environment for company-wide use, and also provides know-how for
program optimization and parallelization.

• Areva [16], a global leader in the nuclear power industry, has recently agreed to order several
optimization and OpenMP tutorials at company locations worldwide. Those will be conducted by our
“LIKWID High Performance Programming” spin-off.

Several contacts have also been established with different parts of Siemens AG. Negotiations have just started.

5 References

[1] G. Hager and G. Wellein: Architectures and Performance Characteristics of Modern High Performance
Computers. In Fehske et al., Lect. Notes Phys. 739, 681-730 (2008), ISBN: 978-3-540-74685-0 [2] G. Hager
and G. Wellein: Optimization Techniques for Modern High Performance Computers. In Fehske et al., Lect.

Notes Phys. 739, 731-767 (2008), ISBN: 978-3-540-74685-0
[3] http://www.hpc.rrze.uni-erlangen.de/HPC4SE
[4] http://www.likwid-software.com
[5] PTfS 2011 (ongoing):

http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=145&username=guest&password=guest
PTfS 2010: http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=112
PTfS 2009: http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=73
PTfS 2008: http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=40
PTfS 2007: http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=18
Older lectures are not available online any more.

[6] http://blogs.fau.de/hager/tutorials/
[7] http://code.google.com/p/likwid
[8] Computing in Science & Engineering, Vol. 13 Issue 1, pp. 5-8, Jan./Feb. 2011 (access is restricted; see

attached hardcopy).
http://dx.doi.org/10.1109/MCSE.2011.3

[9] ACM Computing Reviews, 04/28/11, Review # CR139012 (access is restricted; see attached hardcopy).
http://www.reviews.com/review/review_reviewprint.cfm?review_id=139012

[10] J. Demmel, K. Yelick: Applications of Parallel Computers. U.C. Berkeley CS267/EngC233, spring
2011. http://www.cs.berkeley.edu/~demmel/cs267_Spr11/

[11] D. Göddeke, S. Turek: High Performance Computing und parallele Numerik. University of Dortmund,
summer 2011.
http://www.mathematik.tu
dortmund.de/de/studiumlehre/vorlesungsverzeichnis/vorlesung/semester=SS11/lec=011200.htm

[12] Z. Bai: Large Scale Scientific Computing. U. C. Davis ECS 231, spring 2011.
http://www.cs.ucdavis.edu/~bai/ECS231/
[13] http://top500.org/resources/books
[14] http://www.supercomp.de/isc11_ap/index.php?mod=2¶m=;;Tutorials,Workshops;;;0
[15] http://www.schaeffler.com
[16] http://www.areva.com

Attachments

• Book reviews “Introduction to High Performance Computing for Scientists and Engineers”

http://www.hpc.rrze.uni-erlangen.de/HPC4SE
http://www.likwid-software.com
http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=145&username=guest&password=guest
http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=112
http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=73
http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=40
http://moodle.rrze.uni-erlangen.de/moodle/course/view.php?id=18
http://blogs.fau.de/hager/tutorials/
http://code.google.com/p/likwid
http://dx.doi.org/10.1109/MCSE.2011.3
http://www.reviews.com/review/review_reviewprint.cfm?review_id=139012
http://www.cs.berkeley.edu/~demmel/cs267_Spr11/
http://www.mathematik.tu
http://dortmund.de/de/studiumlehre/vorlesungsverzeichnis/vorlesung/semester=SS11/lec=011200.htm
http://www.cs.ucdavis.edu/~bai/ECS231/
http://top500.org/resources/books
http://www.supercomp.de/isc11_ap/index.php?mod=2¶m=;;Tutorials,Workshops;;;0
http://www.schaeffler.com
http://www.areva.com

January/February 2011� 7

and Repast pages to see how they can
turn the outstanding theory in this
book into actual code.

In sum, Networks, Crowds, and Mar-
kets is an exceptional book. In a time

where people are talking about e-books
heralding the eventual demise of books
in general, this is a book you’re going
to want to own—in print. The au-
thors seem committed to keeping the
prepublication draft available on their

site in PDF, which is a great service to
humanity and cash-strapped students,
so you can even read it for free before
purchasing your copy. I managed to
learn a great deal about game theory
and markets (topics I never studied as a
student) and am planning on incorpo-
rating these ideas in my teaching and
in future research projects.

George K. Thiruvathukal is a computer

scientist and interdisciplinary researcher

who codirects Loyola University Chicago’s

new Center for Textual Studies and Digi-

tal Humanities. He has written books for

Prentice Hall PTR and Sun Microsystems

Press and knows how difficult it is to

make money writing books, even when

you write a good one. Thiruvathukal is

associate editor in chief for CiSE and for

Computing Now (an online initiative of

the IEEE Computer Society). For more

information, please visit http://home.

thiruvathukal.com.

A Highly Useful HPC Reference 	
for Scientists and Engineers
By Hang Liu

G. Hager and G. Wellein, Introduction to High Performance Computing for Scientists
and Engineers, Chapman & Hall/CRC Press, Computational Science Series, 2011,
ISBN: 978-1-4398-1192-4, 330 pp.

B ooks on high-
performance com-
puting typically

fall under two headings.
One type is concerned with

developing high-performance paral-
lel algorithms for specific tasks, such
as linear algebra operations and fast
Fourier transforms. The other type
discusses how to implement a given
algorithm and execute it on different
types of modern parallel computer
systems. This book by Georg Hager
and Gerhard Wellein is a complete
and well-organized example of the
latter, with a clear main theme: how
to achieve and improve scientific com-
puting performance through multiple
concurrency and data locality.

Content Overview
In Chapter 1, Hager and Wellein in-
troduce modern processor designs,

including chip transistor counts and
clock speeds. They start by emphasiz-
ing concepts for improving application
performance using multiple concur-
rency and data locality at hardware and
instruction level. Examples they discuss
include pipelined functional units, super-
scalar architectures, single instruction
multiple data (SIMD), memory cache hi-
erarchies, and multithreaded processors.

Chapters 2 and 3 deal with perfor-
mance optimization techniques for
serial code. In high-performance com-
puting, data access is the most impor-
tant factor that limits performance.
Hence, the focus here is on data access
efficiency, and the authors offer many
valuable tips. They also introduce bal-
ance analysis and bandwidth-based
performance modeling, then demon-
strate them using the Stream bench-
marks to show the hardware’s practical
capabilities in real applications.

Chapter 4 introduces parallel com-
puting at the application level. It dis-
cusses parallelization’s benefit and
power, as well as the factors that limit
parallel performance. These factors
include communication/synchronization
costs, load balancing, and parallel-
ism’s inherent overhead. The authors
quantify the details of the parallel
performance model, efficiency, speed-
up, scaling, and scalability metrics in
Chapter 5. Readers must understand
these essential concepts if they want to

•	 analyze the parallel performance
they can expect,

•	 interpret the reported parallel per-
formance analysis,

•	 measure an application’s parallel
performance, and

•	 identify opportunities for improv-
ing parallel performance in an
application.

Having developed all the major
concepts of high-performance parallel
computing, the authors focus on tech-
niques and tools for developing paral-
lel applications in the rest of the book.
For example, Chapters 6 and 9 discuss
how to develop parallel applications
using the most accepted APIs—that
is, OpenMP on shared memory

CISE-13-1-Book.indd 7 08/12/10 5:05 PM

B o o k s

8� Computing in Science & Engineering

systems and MPI on distributed
memory systems—while Chapter 11
focuses on MPI/OpenMP hybrid pro-
gramming. These three chapters are
brief. Although definitely too short
for serious developers, the chapters
provide a simple yet clear introduc-
tion for beginners. This truncation is
a wise choice; OpenMP and MPI have
been the de facto standards for shared
and distributed memory program-
ming for a long time, and rich refer-
ences for them are available elsewhere
at a various sophistication levels.

Highs and Lows
Much of this book is commendable:
there are many figures in the chapters
and a rich bibliography at the end. The
figures make it easy to understand the
book’s points, especially when pre-
senting performance results. The bib-
liography is organized by topic, making
it easy for readers to check for further
references on subjects of interest.

As with all computer science books
that involve developing technologies,

there will be disappointments when the
newest hardware isn’t discussed. The
authors mention in the preface that
they deliberately ignore parallel I/O
systems whose efficiency is heavily de-
pendent on hardware specifics. While
it’s true that parallel I/O is a complex
subject, it still deserves an examina-
tion. With the increased parallel scale
of scientific and engineering comput-
ing, I/O is easily a bottleneck to appli-
cation and system performance. Some
relevant I/O performance tips would be
a helpful supplement to the book’s fo-
cus on data access performance. Also,
the authors ignore the recent develop-
ments of modern accelerator technolo-
gies and the partitioned global address
space (PGAS) programming models.
Currently, many accelerator-enabled
clusters are available to research com-
munities. One would hope for a brief
outlook section or chapter reviewing the
opportunities—and limitations—that
these tools offer in terms of perfor-
mance, programmability, and produc-
tivity. Perhaps in the next edition.

O verall, Hager and Wellein have
written a great book; it’s self-

consistent and clear, full of practical
and invaluable experiences, and is
especially suitable as an in-hand ref-
erence for scientists and engineers
interested in applying high-performance
computing to their research. The case
studies and problems at the end of
the chapters resonate with practical
performance tips and suggestions
useful to anyone interested in high-
performance computing—including
me, a scientist at a supercomputer cen-
ter who often helps and trains fellow
researchers in these techniques.�

Hang Liu is a research associate in the Texas

Advanced Computing Center at the Univer-

sity of Texas, Austin. His research interests

include algorithm development, implemen-

tation, validation, and performance optimi-

zation to suite large-scale physics calculations

on modern high-performance computing

architectures. Liu has a PhD in physics

from Ohio University. Contact him at hliu@

tacc.utexas.edu.

CISE-13-1-Book.indd 8 08/12/10 5:05 PM

