Recommendations for Bachelor-/ Master Programs in Computer Science

Hans-Ulrich Heiss

Faculty IV Electrical Engineering & Computer Science TU Berlin

Study Commission Fakultätentag Informatik Germany

Fakultätentag Informatik Fakultäten Informa

General Remarks

- German university diploma (5 year program) has a long-standing tradition of a high-quality degree
- German implementation of the Bologna Process forces universities to abolish the diploma
- Master degree should be comparable to diploma degree
- Students are expected to aim at a master degree in general

Design Space of Academic Programs restricted by...

Goals of Recommendations

- Provide guidelines for member universities
 - No need to reinvent the wheel
- Restrict range of variants
 - Define a mandatory core of subjects
- Ensure comparability of German degrees
 - Graduates should have a comparable competence
- Ensure mutual acknowledgement of degrees
 - Changing universities should be easy
- Facilitate accreditation
 - Following the recommendations should help to be accredited successfully

General Properties of B/M-Program

Scientific Orientation

Consecutiveness

Master program based on bachelor program's content

Duration

- Bachelor: 6 semester
- Master: 4 semester

Employability

- Programming, Software Engineering...
- Soft skills (team work, presentation techniques, writing,...)

Quality Assurance

 Teaching evaluation, study success and progress control, alumni program

Counseling

- Mentor program: each student is assigned a professor (mentor) as individual advisor
- Modularization
 - Curriculum organized in modules

Module concept

A reasonable clustering of single courses that

- build on each other or complement each other
- belong to same phase of study
- pursue a well defined competence profile
- Idea: one module one exam one mark
- Size of module: usually 4-9 cp
 - Duration: 1-2 semesters
 - Exams immediately at the end of module
 - Modules may build on each other, to form sequences of specialization
 - Modules are defined "supply-side" and announced in a module catalogue (document updated annually)
- Reduction of administration overhead at central and local exam offices
- Ease at developing innovative study programs for life long learning

Calculation of "Workload" acc. to ECTS

- ECTS: European Credit Transfer System
- Credits estimate the real work load of an average student
- 1 ECTS credit point = 30 h work
- Workload per year: max. 1800 hours:
 - 45 weeks with 40 hours
- Equivalent to 60 ECTS-cp
- per semester: 30 ECTS-cp
- Example: 2 hours weekly lecture
 - 2 presence hours * 15 weeks = 30 hours
 - Preparation and afterwork: 15 hours (1h/week)
 - Exam preparation: 15 hours total
 - Total: 60 hours workload = 2 ECTS cp

Properties of Bachelor Program

Teaching the scientific foundations of discipline

- Preparation for lifelong learning
- (No change with regard to "old" Diplom)
- Employability
 - Teaching facts, methods and skills necessary for getting a qualified job

Challenge

How to squeeze both goals into a 3-year program

Bachelor's General Competences

- A bachelor program's graduate...
- masters methods to analyze problems
- masters methods to build models
- has skills to solve programming problems under technical, economic and social conditions
- is aware of IT security problems and knows the means to address them
- has gained experience in some application area
- knows how to work in teams and to take over responsibility for particular tasks
- has acquired competences outside CS and is sensible for non-technical aspects
- is well prepared for lifelong learning in different areas of employment

How to attain employability

- Practice in programming and software development are emphasized
- Soft skills are acquired in regular courses
- Mandatory seminars including teaching rhetoric, presentation techniques, scientific writing...
- Mandatory projects to learn to self-organize in teams, to take over responsibilities, to keep deadlines, to communicate, to document, to present results...
- Additional courses from other faculties are encouraged (rhetoric, presentation, personal working techniques, business administration...)

Example: Seminar

- Students are expected to give a presentation and to write a seminar paper
- Seminar starts with an introduction to presentation techniques, rhetoric and scientific writing
- Students are given topics, but no material
- All student presentations are video-taped and discussed in group
- Seminar papers undergo a peer-to-peer-review (similar to conferences)

General Structure of Bachelor's program

1st Sem 30 CP	2nd Sem 30 CP	3rd Sem 30 CP	4th Sem 30 CP	5th Sem 30 CP	6th Sem 30 CP
Image: Section of the section of t	F	oundations ≥ 35 CP Systems ≥ 50 CP			Bachelor thesis 12-15 CP
	Mathe ≥ 25	Minor Subject ≥ 16 CP			
Μα	ostly manda	atory subje	cts I	Mostly elec	tive subjects

Mandatory Foundation Subjects

- Automata, Formal Languages, Complexity
 - Chomsky hierarchy, computability, decidability, complexity, NPcompleteness,...
- Logic
 - Propositional logic, predicate logic, incompleteness, logic programming,...
- Formal Systems
 - Induction and recursion, term algebras, abstract data types,...
- Modelling
 - ER models, state and transition models, UML, petri nets, model transformation,...
- Programming
 - Basic concepts of imperative and OO languages,...
- Programming paradigms
 - OO, functional, logic and parallel programming,...
- Data Structures and Algorithms
 - Sorting and searching, hashing, trees, graph algorithms, algorithmic principles, verification, complexity analysis,...

Mandatory Systems Subjects

- Digital Systems
 - Boolean algebra, logic networks, minimization, functional components, realization of logic functions,...
- Computer organization
 - Number representation and arithmetic, assembler programming, processor architecture, instruction interpretation, pipelining, memory hierarchy, I/O,...
- Operating Systems
 - Processes, concurrency synchronization, communication, files, system calls, shells, utilities,...
- Computer Networks and Distributed Systems
 - Services and protocols, architectures, OSI reference model, Internet protocols, causality and logical time,...
- Software Technology
 - SW process models, project management, requirement analysis, specification, implementation techniques, testing, maintenance, CASEtools,...
- Database Systems
 - Relational model and algebra, normal forms, SQL, query optimization, transactions and consistency,...
- IT Security
 - Threat and risk analysis, security policy, cryptography and protocols, authentication, access control, information flow, models,...

Elective Systems Subjects

- Artificial Intelligence
 - Knowledge repr., searching, learning, robotics, natural language processing
- Compiler construction
 - Syntax, semantics, lexical analysis, parsing, code generation, code optim.
- Human Computer Interface
 - Software ergonomics, user interfaces, usability engineering, workflows
- Simulation
 - Continuous, discrete and hybrid processes, event based simulation, applic.
- Computer Graphics
 - Raster and vector graphics, 3d-transforms, projections, illumination models
- Computer Vision
 - Pattern recognition, image processing, projective geometry, camera models
- Social Aspects
 - Information society, globalization, E-governance, regulation issues, IP
- Electrical Engineering
 - System theory, control theory, information theory, semiconductors,
- System Software
 - Low-level programming, memory management, communication networks
- Embedded Systems
 - Specification, realtime-OS, realtime scheduling, HW/SW-codesign, DSP

Mathematics Subjects

Mandatory:

- Calculus
 - Rational, real and complex numbers, series, limits, convergence, continuity, differentiation, integration (one and more variables), Fourier transform
- Linear Algebra
 - Vector spaces, linear equation systems, linear mappings, matrices, determinants, eigenvalues
- Discrete Structures
 - Sets, relations, graphs, terms, groups, fields, combinatorics, basics of number theory

Elective:

- Probability theory
 - Probability spaces, stochastic variables, independence, distributions and their moments, central limit theorem, stochastic processes, Markov chains

Statistics

- Relevant distributions, sampling theory, test theory, confidence intervals
- Numerics
 - Floating point arithmetic, stability, interpolation, iterative solution of LES, ordinary DES

Minor Subjects

Goal

- Understand terminology and way of thinking of another discipline
- Be prepared for multidisciplinary work

Any reasonable field of application or complementary subject, e.g.

- Electrical Engineering
- Mathematics
- Business Administration
- Economics
- Mechanical Engineering
- Physics
- Linguistics
- (Neuro)Biology
- Philosophy
- Sociology
- Psychology
- Political Sciences
- H.-U. Heiss, TU Berlin Music

Example: Bachelor at TU Berlin

 СР					
1st Sem. 29 CP	Digital Systems (6 CP)	Algorithmic and Functional Solution of Discrete Problems (9 CP)		Found. and Algebraic Structures (8 CP)	Linear Algebra (6 CP)
2nd Sem. 29 CP	Computer Organization (6 CP)	Data Structures and Algorithms in Imperative Style (9 CP)		Automata and Complexity (6 CP)	Calculus I (8 CP)
 3rd Sem. 32 CP	System Programming (6 CP)	Software Engineering	Practical Program Development (6 CP)	Logic and Calculi (6 CP)	Calculus II (8 CP)
4th Sem. 30 CP	Networks and Distributed Systems (6 CP)	(12 CP) Including Project	Database Systems (6 CP)	Specification and Semantics (6 CP)	Stochastics (6 CP)
 5th Sem. 30 CP	Computer Science Electives (21-24 CP) Software Technology or Communication Technology		Minor Studie	Management (6 CP)	
 6th Sem. 30 CP			Bachelor's Thesis (12 CP)		Social Aspects of CS (6 CP)

Properies of a Master's Program

- Research orientation
- Specialization and depth
- Integration into research activities of faculty
 Providing knowledge and skills for academic work (e.g. Master's thesis)

Master's General Competences

A master program's graduate

- has reached a higher maturity and self-assurance in solving CS problems
- has acquired advanced knowledge in one specialization area
- has the necessary breadth and depth to get quickly used to new areas
- is not only able to apply the acquired problem solving skills in research and development, but also to challenge and develop them further, if necessary
- has acquired technical, intellectual and social skills to be prepared for management and leadership

Example: Master at TU Berlin

Master's Program in Computer Science (Basic Structure)						
Major Studies (54 - 60 CP)						
 in the specialization area System Engineering Dependable Systems 	Minor Studies (18 - 24 CP)	General Studies (12 - 18 CP)				
 Intelligent Systems Communication Systems 						
Master's Thesis (30 CP)						
	Master's Program in Compute Major Studies (54 - 60 CP) including at least 30 CP in the specialization area . System Engineering . Dependable Systems . Intelligent Systems . Communication Systems	Master's Program in Computer Science (Basic St Major Studies (54 - 60 CP) including at least 30 CP in the specialization area • System Engineering • Dependable Systems • Intelligent Systems • Communication Systems Master's Thesis (30 CP)				

Specialization areas in the Master's Program

System Engineering

 Software Engineering, Programming Language Design, Compiler Construction, Computer Organization, Design Automation, Operating Systems, Performance Evaluation, Information Systems, Computer&Law, Information Economy, System Analysis, Enterprise Architecture, Net Business Processing,...

Dependable Systems

 Component-Based Modeling, Specification Tools, Semantics and Calculi, Security&Trust, Realtime Systems, Computer and Network Security, Correctness, Testing, Fault-tolerance,...

Intelligent Systems

 Neural Information Processing, Bio-Informatics, Intelligent Data Analysis, Computer Graphics, Computer Vision, Image Analysis, Robotics, Artificial Intelligence, Agent Oriented Systems,...

Communication-based Systems

Communication Networks, Protocol Design, Performance Evaluation, Mobile
 Communication, Ubiquituous Communication & Ambient Intelligence, Next
 Generation Networks, (Open) Distributed Systems, Service Delivery Platforms,...

Next Steps

Get feedback from member universities about compliance with recommendations

- Further elaborate recommendations in terms of outcome orientation
- Exchange ideas and concepts with other European countries

Recommendations available at the homepage of Fakultätentag Informatik

in German

www.ft-informatik.de/fileadmin/dokumente/2005/bachelor_master_empfehlungen.pdf

in English

www.ft-informatik.de/fileadmin/dokumente/2005/bachelor_master_recommendations.pdf

Alternatives in discussion

