Recommendations for Bachelor-/ Master Programs in Computer Science

Hans-Ulrich Heiss

Faculty IV Electrical Engineering & Computer Science
TU Berlin

Study Commission Fakultätentag Informatik Germany
General Remarks

- German university diploma (5 year program) has a long-standing tradition of a high-quality degree
- German implementation of the Bologna Process forces universities to abolish the diploma
- Master degree should be comparable to diploma degree
- Students are expected to aim at a master degree in general
Structure

Old:

- Diplom CS (Vordiplom) (9-10 Sem.)

New:

- Master CS 120 cp (2 years (4 Sem.))
- Bachelor CS 180 cp (3 years (6 Sem.))
- PhD

Labor Market
Design Space of Academic Programs restricted by....
Goals of Recommendations

- Provide guidelines for member universities
 - No need to reinvent the wheel
- Restrict range of variants
 - Define a mandatory core of subjects
- Ensure comparability of German degrees
 - Graduates should have a comparable competence
- Ensure mutual acknowledgement of degrees
 - Changing universities should be easy
- Facilitate accreditation
 - Following the recommendations should help to be accredited successfully
General Properties of B/ M-Program

- **Scientific Orientation**
- **Consecutiveness**
 - Master program based on bachelor program’s content
- **Duration**
 - Bachelor: 6 semester
 - Master: 4 semester
- **Employability**
 - Programming, Software Engineering…
 - Soft skills (team work, presentation techniques, writing,…)
- **Quality Assurance**
 - Teaching evaluation, study success and progress control, alumni program
- **Counseling**
 - Mentor program: each student is assigned a professor (mentor) as individual advisor
- **Modularization**
 - Curriculum organized in modules
Module concept

- A reasonable clustering of single courses that
 - build on each other or complement each other
 - belong to same phase of study
 - pursue a well defined competence profile
- Idea: one module – one exam – one mark
- Size of module: usually 4-9 cp
- Duration: 1-2 semesters
- Exams immediately at the end of module
- Modules may build on each other, to form sequences of specialization
- Modules are defined „supply-side“ and announced in a module catalogue (document updated annually)
- Reduction of administration overhead at central and local exam offices
- Ease at developing innovative study programs for life long learning
Calculation of „Workload“ acc. to ECTS

- ECTS: European Credit Transfer System
- Credits estimate the real work load of an average student
- 1 ECTS credit point = 30 h work
- Workload per year: max. 1800 hours:
 - 45 weeks with 40 hours
- Equivalent to 60 ECTS-cp
- per semester: 30 ECTS-cp
- Example: 2 hours weekly lecture
 - 2 presence hours * 15 weeks = 30 hours
 - Preparation and afterwork: 15 hours (1h/week)
 - Exam preparation: 15 hours total
 - Total: 60 hours workload = 2 ECTS cp
Properties of Bachelor Program

- Teaching the scientific foundations of discipline
 - Preparation for lifelong learning
 - (No change with regard to "old" Diplom)

- Employability
 - Teaching facts, methods and skills necessary for getting a qualified job

- Challenge
 - How to squeeze both goals into a 3-year program
Bachelor’s General Competences

A bachelor program’s graduate...

- masters methods to analyze problems
- masters methods to build models
- has skills to solve programming problems under technical, economic and social conditions
- is aware of IT security problems and knows the means to address them
- has gained experience in some application area
- knows how to work in teams and to take over responsibility for particular tasks
- has acquired competences outside CS and is sensible for non-technical aspects
- is well prepared for lifelong learning in different areas of employment
How to attain employability

- Practice in programming and software development are emphasized
- Soft skills are acquired in regular courses
- Mandatory seminars including teaching rhetoric, presentation techniques, scientific writing...
- Mandatory projects to learn to self-organize in teams, to take over responsibilities, to keep deadlines, to communicate, to document, to present results...
- Additional courses from other faculties are encouraged (rhetoric, presentation, personal working techniques, business administration...)
Example: Seminar

- Students are expected to give a presentation and to write a seminar paper
- Seminar starts with an introduction to presentation techniques, rhetoric and scientific writing
- Students are given topics, but no material
- All student presentations are video-taped and discussed in group
- Seminar papers undergo a peer-to-peer-review (similar to conferences)
General Structure of Bachelor’s program

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credits</th>
<th>Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Sem</td>
<td>30 CP</td>
<td>Foundations ≥ 35 CP</td>
</tr>
<tr>
<td>2nd Sem</td>
<td>30 CP</td>
<td>Systems ≥ 50 CP</td>
</tr>
<tr>
<td>3rd Sem</td>
<td>30 CP</td>
<td>Mathematics ≥ 25 CP</td>
</tr>
<tr>
<td>4th Sem</td>
<td>30 CP</td>
<td>Minor Subject ≥ 16 CP</td>
</tr>
<tr>
<td>5th Sem</td>
<td>30 CP</td>
<td>Bachelor thesis 12-15 CP</td>
</tr>
<tr>
<td>6th Sem</td>
<td>30 CP</td>
<td>Mostly mandatory subjects</td>
</tr>
</tbody>
</table>

Mostly elective subjects
Mandatory Foundation Subjects

- Automata, Formal Languages, Complexity
 - Chomsky hierarchy, computability, decidability, complexity, NP-completeness,…

- Logic
 - Propositional logic, predicate logic, incompleteness, logic programming,…

- Formal Systems
 - Induction and recursion, term algebras, abstract data types,…

- Modelling
 - ER models, state and transition models, UML, petri nets, model transformation,…

- Programming
 - Basic concepts of imperative and OO languages,…

- Programming paradigms
 - OO, functional, logic and parallel programming,…

- Data Structures and Algorithms
 - Sorting and searching, hashing, trees, graph algorithms, algorithmic principles, verification, complexity analysis,…
Mandatory Systems Subjects

- Digital Systems
 - Boolean algebra, logic networks, minimization, functional components, realization of logic functions,…

- Computer organization
 - Number representation and arithmetic, assembler programming, processor architecture, instruction interpretation, pipelining, memory hierarchy, I/O,…

- Operating Systems
 - Processes, concurrency synchronization, communication, files, system calls, shells, utilities,…

- Computer Networks and Distributed Systems
 - Services and protocols, architectures, OSI reference model, Internet protocols, causality and logical time,…

- Software Technology
 - SW process models, project management, requirement analysis, specification, implementation techniques, testing, maintenance, CASE-tools,…

- Database Systems
 - Relational model and algebra, normal forms, SQL, query optimization, transactions and consistency,…

- IT Security
 - Threat and risk analysis, security policy, cryptography and protocols, authentication, access control, information flow, models,…
Elective Systems Subjects

- Artificial Intelligence
 - Knowledge repr., searching, learning, robotics, natural language processing
- Compiler construction
 - Syntax, semantics, lexical analysis, parsing, code generation, code optim.
- Human Computer Interface
 - Software ergonomics, user interfaces, usability engineering, workflows
- Simulation
 - Continuous, discrete and hybrid processes, event based simulation, applic.
- Computer Graphics
 - Raster and vector graphics, 3d-transforms, projections, illumination models
- Computer Vision
 - Pattern recognition, image processing, projective geometry, camera models
- Social Aspects
 - Information society, globalization, E-governance, regulation issues, IP
- Electrical Engineering
 - System theory, control theory, information theory, semiconductors,
- System Software
 - Low-level programming, memory management, communication networks
- Embedded Systems
 - Specification, realtime-OS, realtime scheduling, HW/SW-codesign, DSP
Mathematics Subjects

- **Mandatory:**
 - Calculus
 - Rational, real and complex numbers, series, limits, convergence, continuity, differentiation, integration (one and more variables), Fourier transform
 - Linear Algebra
 - Vector spaces, linear equation systems, linear mappings, matrices, determinants, eigenvalues
 - Discrete Structures
 - Sets, relations, graphs, terms, groups, fields, combinatorics, basics of number theory

- **Elective:**
 - Probability theory
 - Probability spaces, stochastic variables, independence, distributions and their moments, central limit theorem, stochastic processes, Markov chains
 - Statistics
 - Relevant distributions, sampling theory, test theory, confidence intervals
 - Numerics
 - Floating point arithmetic, stability, interpolation, iterative solution of LES, ordinary DES
Minor Subjects

Goal
- Understand terminology and way of thinking of another discipline
- Be prepared for multidisciplinary work

Any reasonable field of application or complementary subject, e.g.
- Electrical Engineering
- Mathematics
- Business Administration
- Economics
- Mechanical Engineering
- Physics
- Linguistics
- (Neuro)Biology
- Philosophy
- Sociology
- Psychology
- Political Sciences
- Music
Example: Bachelor at TU Berlin

<table>
<thead>
<tr>
<th>CP</th>
<th>Bachelor’s Program in Computer Science</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Sem. 29 CP</td>
<td>Digital Systems (6 CP)</td>
</tr>
<tr>
<td>2nd Sem. 29 CP</td>
<td>Computer Organization (6 CP)</td>
</tr>
<tr>
<td>3rd Sem. 32 CP</td>
<td>System Programming (6 CP)</td>
</tr>
<tr>
<td>5th Sem. 30 CP</td>
<td>Computer Science Electives (21-24 CP)</td>
</tr>
<tr>
<td>6th Sem. 30 CP</td>
<td>Software Technology or Communication Technology</td>
</tr>
</tbody>
</table>
Properties of a Master’s Program

- Research orientation
- Specialization and depth
- Integration into research activities of faculty
- Providing knowledge and skills for academic work (e.g. Master’s thesis)
Master’s General Competences

A master program’s graduate

- has reached a higher maturity and self-assurance in solving CS problems
- has acquired advanced knowledge in one specialization area
- has the necessary breadth and depth to get quickly used to new areas
- is not only able to apply the acquired problem solving skills in research and development, but also to challenge and develop them further, if necessary
- has acquired technical, intellectual and social skills to be prepared for management and leadership
Example: Master at TU Berlin

<table>
<thead>
<tr>
<th>CP</th>
<th>Master’s Program in Computer Science (Basic Structure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st 30 CP</td>
<td>Major Studies (54 - 60 CP) including at least 30 CP in the specialization area</td>
</tr>
<tr>
<td>2nd 30 CP</td>
<td>System Engineering</td>
</tr>
<tr>
<td></td>
<td>Dependable Systems</td>
</tr>
<tr>
<td></td>
<td>Intelligent Systems</td>
</tr>
<tr>
<td></td>
<td>Communication Systems</td>
</tr>
<tr>
<td>3rd 30 CP</td>
<td>Minor Studies (18 - 24 CP)</td>
</tr>
<tr>
<td>4th 30 CP</td>
<td>General Studies (12 - 18 CP)</td>
</tr>
<tr>
<td></td>
<td>Master’s Thesis (30 CP)</td>
</tr>
</tbody>
</table>
Specialization areas in the Master’s Program

- **System Engineering**

- **Dependable Systems**

- **Intelligent Systems**
 - Neural Information Processing, Bio-Informatics, Intelligent Data Analysis, Computer Graphics, Computer Vision, Image Analysis, Robotics, Artificial Intelligence, Agent Oriented Systems, ...

- **Communication-based Systems**
 - Communication Networks, Protocol Design, Performance Evaluation, Mobile Communication, Ubiquitous Communication & Ambient Intelligence, Next Generation Networks, (Open) Distributed Systems, Service Delivery Platforms, ...
Next Steps

- Get feedback from member universities about compliance with recommendations
- Further elaborate recommendations in terms of outcome orientation
- Exchange ideas and concepts with other European countries
Recommendations available at the homepage of Fakultätentag Informatik

- in German
- in English
Alternatives in discussion

I

PhD

II

PhD

PhD

III

Master

Master

Master

IV

Bach.

Diplom

Bach.

integ. Master

Bach.

Found.

PhD

PhD

PhD

PhD