European Science Initiative

Fabien Petitcolas
Microsoft Research labs

Institutes / joint centres

Founded in 1991
Staff of over 700 covering 55 areas
Core research facility for entire company
Microsoft Research mission

- Advance the state of the art in our chosen areas of computer science
 - Making computers easier to use
 - Reducing the cost of computing
 - Making software developers more productive
- Transfer the resulting technology to Microsoft businesses
- Ensure Microsoft has a future
 - Provide corporate agility – rapid response to change
 - Reservoir of technology
 - Pool of expertise and smart people
- Create a technical asset for Microsoft in Europe
MSR Cambridge

90 Researchers
120 total staff
Plus 50-60 interns

1 Turing Award winner
1 Kyoto prize winner
2 Marr prize winners
2 ACM Fellows
3 Royal Society Fellows
3 Royal Academy of Engineering Fellows

70+ top tier publications
65+ patents filed

Constraint solving
Operating systems networking distributed systems
Programming principles and tools
European Science Initiative
Machine learning and perception
Security
Computer mediated living
Jobs & internships

• Post-doc positions
 – A great opportunity to work with some of the top minds in the research community, and the strongest teams, in a whole range of areas of computer science and information engineering.
 – Competitive salary and benefits package
 – Eligible for relocation expenses
 – research.microsoft.com/aboutmsr/jobs/postdocs/about_uk.aspx

• Internships for PhD students
 – 60 interns (PhD) each year at MSR Cambridge
 – Competitive salary
 – research.microsoft.com/aboutmsr/jobs/internships/about_uk.aspx
European Science Initiative
Aim

Create, enable, accelerate fundamental advances in science through computing and in computing through science by research at their intersection
• Important developments underway at intersection of computing & science

• Potential to profoundly transform science, economy, society

• Enabling new conceptual and technological tools – foundations for new scientific revolution: ‘new kinds’ of science

• Tools instantiated in software

• As world’s largest software company can’t afford to remain ‘nowhere’ here – Need & opportunity to contribute, lead, learn
• **Focus where we can make a difference**
 – Scientific: Systems Biology, Ecology & Environmental Science, Bio-computation
 – Technological: New kinds of tools to address important scientific challenges
 – Community: Support scientists, Support science, build tools to do better / different science, bring together people & ideas that might not otherwise meet

• ‘Open Innovation’
 – Team = combination of internal + external scientists + joint appointments
 – Public-private partnerships (e.g., CoSBi, INRIA, IRCSET)

• Inter-disciplinarity
 – People – as well as projects
Joint centres

- **Microsoft Research-University of Trento Centre for Computational and Systems Biology**
 - February 2005
 - Computational tools to enable biologists and others working in the life sciences to better understand and predict complex processes in biological systems

- **Microsoft Research INRIA Joint Centre**
 - April 2005
 - Application of mathematics to improve software and systems security
 - Development of new software tools for the management and analysis of complex scientific data.
140,000 reports requested

Project got on front cover of Nature

Discussed in House of Lords

Influenced Science Policy in UK, USA, Denmark, Israel, Sweden, Norway, Ireland, Canada

Continues to have significant influence in science community worldwide

Over 200 press articles worldwide about our work
Ecology & Environmental Science

Aim
New kinds of theoretical and computational tools and methods to accelerate advances in areas that present important and urgent scientific challenges: Understanding our *Biosphere* and changes occurring to it

Focus

<table>
<thead>
<tr>
<th>Understanding Ecosystems and Biodiversity</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Modelling species distributions</td>
<td>1.</td>
</tr>
<tr>
<td>5. Global Pandemic Modelling System</td>
<td>5.</td>
</tr>
</tbody>
</table>

| Understanding Biotic component of Climate System | Projects |
|--|
| 1. Connecting tree physiology to evapotranspiration and global climate | 1. |
| 2. Understanding biogeochemical feedback on earth system | 2. |

<table>
<thead>
<tr>
<th>Managing Ecological and Biodiversity Data</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Integrating ecological and biodiversity data</td>
<td>1.</td>
</tr>
<tr>
<td>5. Tools for cloud forest conservation</td>
<td>5.</td>
</tr>
<tr>
<td>6. Initial release of digitized Cambridge Herbarium Collection, including Darwin’s collection from voyage on The Beagle</td>
<td>6.</td>
</tr>
</tbody>
</table>
Computational Biology

Aim

Create new conceptual and technological tools and methods that enable important advances in areas of biological science that present fundamental challenges and opportunities.

<table>
<thead>
<tr>
<th>Focus</th>
<th>Projects</th>
</tr>
</thead>
</table>
| **Programming language for biology** | 1. Extend and refine SPiM, esp UI + efficiency on multicore
2. Ability to visualise causality in pi-calculus using Msg Sequence Charts
3. Make tools more biologist-friendly through GUI |
| **Understanding Living Systems 1: Cell** | 1. Dynamic, modular method of modelling gene regulatory networks from simple computational elements (currently requires fixing system topology before implementation) -- model robust (stochastic) cellular clocks from genetic building blocks
2. Toolkit for stochastic time-series modelling of single cell (assay) data -- integrating in-silico + in-vitro data through standard measure of comparison – apply to apoptosis pathway and gene delivery process
3. Abstract machine (for process calculi with compartments) for whole cell modelling
4. *Generic Executable Cell* – modifiable to all cell types |
| **Understanding Living Systems 2: Immune System** | 1. Compositional model of MHC Class I Antigen Presentation (key immune system pathway) using SPiM [see above]
2. Test model predictions |
| **Understanding Living Systems 3: Whole Organism** | 1. *Lead effort to build complete compositional, executable, dynamic computational model of whole organism* (*C.Elegans* likely candidate) inc visualisation (& animation of dynamics), intra/extra cellular input-output, development, maturation, apoptosis, environment |
Community

- PhD Scholarship programme
 - Summer School
- Fellowship for early career scientists
- European Science Award

- Inspire

- Workshop series
- Seminar series
PhD scholarship programme

- Encourage interdisciplinary research
- Increase and help collaboration between MSRC and Academia
- Identify potential employees and interns
- Create a community
- Open application process
 - Reviews by internal and external experts
 - Ranking
PhD – Not just funding

Welcome event
Summer school
Internship
MSR job interview? Fellowship? Alumni network?

For the students
• Research training
• Learn about other areas of research
• Opportunity to create links

For MSR
• Get an update on their work
• Opportunity to create links
• Identify potential interns

TabletPC
Travel grant to tier-1 conferences
Co-supervision by MSR people
Fellowship programme

- Recognise and support early-career scientist
- Encourages faculty to develop and maintain intellectual independence at a critical time in their careers
 - Very flexible 2-year sponsorship (€250,000)
- Reward far-reaching research that extends the impact of computing
 - Systems biology
 - Computational ecology
- Nomination by HoD or professors
 - Screening
 - Review by internal and external experts
 - Interviews
European Science Award

• Recognise scientists in Europe who have made a significant contribution to their research field through the use of computational methods

• Selection by the Royal Society and the Académie des Sciences

• Nomination and references

• Selection based on passed achievement (shortlist and vote)
European Science Award

- **Characteristics**
 - Amount: €250,000
 - Even years:
 - Biological sciences ∩ computer science
 - Ceremony in London
 - Odd years:
 - Physical sciences ∩ computer science
 - Ceremony in Paris

- **Committee**
 - 3 from Royal Society
 - 3 from Académie des Sciences
Inspire programme

– Promote interaction between academics from Africa / Middle East and from Europe / USA:
 • Visiting researchers/teachers
 • Sponsorship of research summer schools

– Encourage students to do research
 • Recognise exceptional students who want to embark on a research career
Research summer school sponsorship

– Bring together students and lecturers from Africa and the Middle East in a program of lectures and tutorials by internationally renowned speakers
– Sponsorship to support attendance of students or faculty to the summer school
– Applications considered twice a year (March & September)
– Sponsorship up to €10,000
– Email: msrinsp@microsoft.com
Volunteer researcher & lecturer

- Facilitate visit of academics from Europe and the USA
 - Online service that matches host universities with academics from Europe or the USA who volunteer to teach computer science
 - Travel stipend to some of the volunteers to assist with travel expenses
- www.msr-inspire.net
research.microsoft.com/ero/