
Galileo: a legacy
for builders of
new worlds?
Francesco Bruschi
Politecnico di Milano

Experimenting
● Let's call a system "experimentable" if it is possible (or

feasible) to concoct experiences:
○ that are repeatable
○ reproducible
○ whose effects can be compared

● Usually:
○ experimenting as a mean of getting to know facts,

laws, or explanations about a natural world that is
given!

● Most of the time,
○ informatics practice deals with building new

worlds, or getting to know worlds built by others

(Brave) New Worlds
● Dijkstra: "And this is what a programmer has to do all

the time; he has to introduce new concepts --not
occurring in the original problem statement-- in order to
be able to find, to describe and to understand his own
solution to the problem."

● So programmers either:
○ invent new worlds (example: Design Specific

Languages, frameworks, libraries)
or
○ try to understand worlds invented by others (to stand

on their (giants'?) shoulders)

A many many worlds
universe
Suppose you want to develop a webapp. Which
frameworks, DSL and APIs would you rely on?
● Pyramid, Django, TurboGears, Rails, Bottle,

Flask, Sinatra, web.go, happstack, yesod etc
etc

● Ever more effort is spent "evaluating" which
DSL, or framework, or library is most
convenient for the problem at hand, and then
learning it.

Read! Evaluate! Print! Loop!
● Ever more often, language builders propose

easily accessible REPL environments
○ golang.org, haskell.org, repl.it

● Experimenting is encouraged for evaluation and
learning: it has a cognitive, didactic value!

● For most of these worlds there is a "grandissimo
libro" of Nature, but it's unfeasible to read them
all...

● But: are all languages equally experimentable?

http://golang.org
http://tryhaskell.org/
http://repl.it
http://golang.org

Experimentable languages
● Recent remarkable reinassance of functional

languages (Clojure, Haskell, Scala, etc)
● Can calling an API function be an

experiment?
● Example:

○ a C function:
int f(int *n)

○ a Haskell function:
f :: Int -> Int

Not replicable: you should know the
memory state!
Not repeatable: it could access files
Results not comparable: it could
have side-effects (IO, etc)

Replicable & Repeatable: result
guaranteed to be the same when
explicit parameters don't change
Results comparable: the signature
guarantees there's no side effect

Galileo's message to
Computer Science?
● Can "Experimentability" be considered a goal

in the definition of new formalisms? (Can
Galileo be prescriptive (at least for SEs)?)

● Is the renewed interest for purely functional
languages an invite to "experiment more" in
the evaluation, learning and mastering of new
formalisms?

● In CS curricula, should we highlight the
possibility of this approach to programming
languages?

From natural to "social"
science
Mental model of a working machine

● in the 80s: mostly based on natural
phenomena (electronics, mechanics, etc)

● since then: many layers of abstraction
added between the machine and the user

● nowadays: the reasons of the features
and workings of a system are much more
related to linguistics, psychology,
history

Example: choose a web-
development framework
[insert list of frameworks]
● how do you choose?
● making a mental model studying

documentation => not feasible (too many
options, poor "formal", "complete"
documentation)

● tutorials are the new learning tool
● learning "by experimenting"?

An engineering perspective
Some remarkable facts of nowadays
informatics engineering:

● a very wide range of different frameworks
for performing a given task

● understanding of the workings of a
framework passes throught
experimentation (rich tutorials and poor
documentation, need to evaluate many
different options)

● a renewed interest for functional
languages (eg: haskell)

Functional Languages
● In the most active areas of software

engineering, renewed interest towards
functional languages (the purer, the better)

● remarkable example: haskell (very pure...)
● features:

○ the value of a function only depends on its input:
■ a function will always return the same results:

● whenever invoke (repeatability)
● in whatever environment it is invoked (reproducibility)

○ it is always explicit whether a function has side-
effects (comparisons of results)

"non-experimentable"
functionint f(int *a) {

FILE f=fopen("data","r");
scanf("%i",&i); a+=i;
printf("%i",a);
return a; }

f(10);

execution of f:
● not repeatable (different calls with same input can

give rise to different output)
● not reproducible (depens on content of file "data")
● results not comparable (we have side effects!)

"experimentable" function
int f(int* a)
f:: int -> int

this simple signature guartantees that
1) whenever the function will be called, it will
always produce the same result (repeatability)
2) given the same inputs, it produces the same
output (reproducibility)
3) it has no side effects (all its "results" are
known, and so can be compared)

● Functional languages try to "maximize" the
experimentable area of a given framework

● and: they push towards "isolating" all the
non-idealities that prevents a system from
being "experimentable" (that is, knowable
from experiments)

● Galileo here doesn't teach us how to know a
given world, but prescribes us how to
build new ones!!

