The Role and Relevance of Experimentation in Informatics

Viola Schiaffonati
Artificial Intelligence and Robotics Laboratory
Politecnico di Milano
Experimentation: role and relevance

• Starting point: philosophy of science perspective (philosophy of experimentation)
• Ending point? Philosophy and engineering
• In the middle: good experimental methodologies in computer science and engineering
 – Grounded philosophy!
Relevance

• Sure, experiments are relevant
 - Experimental scientific method taking center stage in computer science and engineering (Freeman 2008, Morrison and Snodgrass 2011)

• Why are they relevant?
 - Help in building a reliable base of knowledge, in leading to useful and unexpected insights, in accelerating progress (Tichy 1998)
Role

• But what about their role?
 – What is an experiment in general and in informatics in particular
 – Experiments in informatics between science and engineering (research)
Taking inspiration from science

• Experimental methodologies in informatics have not yet reached the level of maturity of other scientific disciplines
 – Idea: look at how experiments are performed in traditional scientific disciplines
 – Principles: comparison, reproducibility and repeatability, justification and explanation
Consequences

• Terminological and conceptual clarification
 – Definition of experiment (experimental methods not to be confused with empirical methods)
 – Replication not enough!

• Application of traditional scientific method to computer science and engineering
 – Comparison, reproducibility/repeatability, justification/explanation declined

• Consideration of peculiar aspects of experiments in engineering
What is an experiment?

• Experiment is **controlled experience** (from Galileo’s ‘*sensate esperienze*’)

• Set of **observations and actions**, performed in a **controlled context**, to test a given hypothesis

 – The phenomenon under investigation must be treated as an isolated object

 – It is assumed that other factors not under investigation do not influence the investigated object
Observing vs. experimenting

• Observing a drop of water through a microscope is not an experiment.
• Observing the same drop through a microscope, after having colored it with a chemical reagent in order to evidence some microorganisms, is an experimental procedure.
 – Ability to control some of the features of a phenomenon under investigation.
 – Purpose of testing the behavior of the drop under some controlled circumstances.
Experimental principles declined

• Autonomous mobile robotics
 – Robots with the ability to maintain a sense of position and to navigate without human intervention
Comparison

• **Comparison** presupposes to know what has been already done in the past to evaluate new results with the old ones

• **Comparison in autonomous mobile robotics**

 – Increasing use of **publicly available data sets** (Victoria Park, RADISH, and Rawseeds) to set a common ground for comparing different systems

 – Development of **comparable implementations**, starting from the description provided in papers and reports and also from the use of the same code
Reproducibility and repeatability

- **Reproducibility** is the possibility to independently verify the results of a given experiment.
- **Repeatability** concerns the fact that a single result is not sufficient to ensure the success of an experiment.
- **Reproducibility and repeatability in autonomous mobile robotics**
 - Implementation of similar experiments to understand the parameters influencing the system.
 - Public distribution of code and/or problem instances.
 - Adoption of standard data sets as benchmarks.
Justification and explanation

- **Justification** deals with drawing justified conclusions on the basis of the information collected during an experiment.
- **Explanation** requires a deep analysis of data to derive correct implications.
- **Justification and explanation in autonomous mobile robotics**
 - Use of several data sets to derive well justified conclusions.
 - Correct behavior of systems verified according to ground truth or visual inspection.
 - Difficulty in generalizing when ground truth is not available.
Experiments from science to engineering

• Not just different objects
 – Natural objects (science)
 – Technical artifacts (engineering)

• But different purposes
 – To understand a natural phenomenon (science)
 – To test an artifact (engineering)
Experiments and technical artifacts

• The notion of technical artifact is central to reflect on experiments in computer science and engineering

• Why?
 – Engineering is an activity producing technology
 – Technology is a practice focused on the creation of artifacts and artifact-based services (Franssen et al., 2010)
Technical artifacts

• Material objects deliberately produced by humans in order to fulfill some practical functions
 – Technical function: what is the technical artifact for?
 – Physical composition: what does it consist of?
 – Instruction for use: how must it be used?

• Mutual dependency
 – Technical artifact as a physical object with a technical function and use plan designed and made by human beings
Informatics and technical artifacts

• Why informatics products are technical artifacts?
• They are physical objects deliberately produced by humans with a technical function and use plan designed and made by human beings (Vermaas et al. 2011)
Experiments and technical function

• Experiments in engineering evaluate technical artifacts according to whether and what amount the function for which they have been built is fulfilled

• **Normative claims** are introduced depending on a given reference function or set of functions
 – The artifact as ‘good’ or ‘bad’

• Is this enough?
Between science and engineering

• Informatics between engineering and science (even with respect to experiments)
 – Experiments performed to test how well an artifact works with respect to a reference model and a metric
 – Experiments performed to understand how complex artifacts (whose behavior is hardly predictable) work and interact with the environment (at different degrees)
Again on the role of experimentation

• More rigor, better progress?
• Internal and external role of experimentation
 – Internal: reflection on the disciplinary status of computer science and engineering from a methodological point of view (not just the object, but also the method)
 – External: toward the philosophy of engineering (with the contribute of philosophy of science and technology)
References

