

Computational Creativity

Hannu Toivonen

University of Helsinki hannu.toivonen@cs.helsinki.fi/hannu.toivonen

ECSS, Gothenburg, 9 Oct 2018

The following video clips, pictures and audio files have been removed from this file to save space:

- Video: Poemcatcher tests "Brain Poetry" machine at Frankfurt Book Fair:
 - https://www.youtube.com/watch?v=cNnbTQL8j
 B4
- Images produced by Deep Dream, see e.g. https://en.wikipedia.org/wiki/DeepDream
- Audio clip: music produced by a programme by Turing and his colleagues

Remote Associates Test (RAT)

- What word relates to all of these three words?
 - coinsilver coin
 - quickquick silver
 - spoonsilver spoon
- Measures the ability to discover relationships between remotely associated concepts
- A (controversial) psychometrical test of creativity
- Correlates with IQ and originality in brain storming

Modeling RATs computationally

A single RAT question is a quadruple

$$r = (c_1, c_2, c_3, a)$$

– A probabilistic approach: find a that maximizes

$$P(a|c_1,c_2,c_3) \propto P(a,c_1,c_2,c_3)$$

Maximize

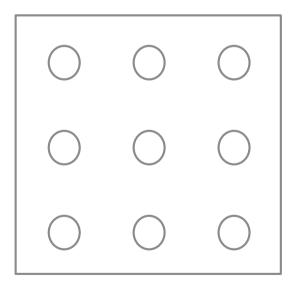
$$P(a) \prod_{i=1}^{3} P(c_i|a)$$

(cf. naïve Bayes)

Modeling RATs computationally

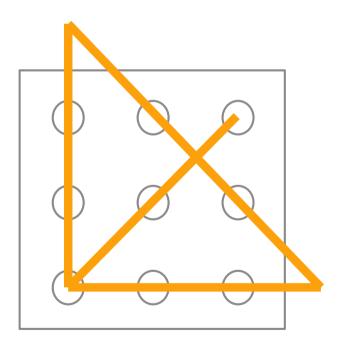
- Learn word frequencies from a large corpus
 - Use Google 1 and 2-grams to estimate probabilities P(a) and $P(c_i|a)$
 - (Google n-grams: a large, publically available collection of word sequences and their probabilities)
- A lot more could be done, but we want to keep things as simple as possible
 - Creative behavior without an explicit semantic resource (such as WordNet)

Modeling RATs computationally


- Data: published psychometric RATs with 212 questions in total
- No preprocessing at all, alternatively just simple stop word removal
- Numbers of correct answers:

Humans [1]	<u>-</u>	Computer: 2-grams, stopwords removed	plurals	
50%	54%	66%	?	?

A test of creativity


 Connect the nine dots with four straight lines without lifting the pen

A test of creativity

Connect the nine dots with four straight lines without lifting the pen

Some key concepts of (computational) creativity

Four Perspectives to Creativity

Producer
Process
Product
Press

(MacKinnon, 1970; Rhodes, 1961)

Defining creativity

Producer

Process

Product

Press

"Creativity is the ability to come up with ideas or artefacts that are *new*, surprising and valuable."

- Boden 1992

→ Computers are creative if they are able to come up with ideas or artefacts that are new, surprising, and valuable.

Creativity vs. mere generation

Two components of creativity:

-Intentionality: the system has a goal, and it is aware of the goal

Self-determinism: the system can make decisions regarding its own behavior

Mere generation:

- –"Just doing what one was told to do"
- –(or was told to learn to do)

Producer
Process
Product
Press

Music with an intent

Produce music that depicts/"sonifies" the user's sleep pattern (so the user can easily follow her sleep patterns and improve her sleep)

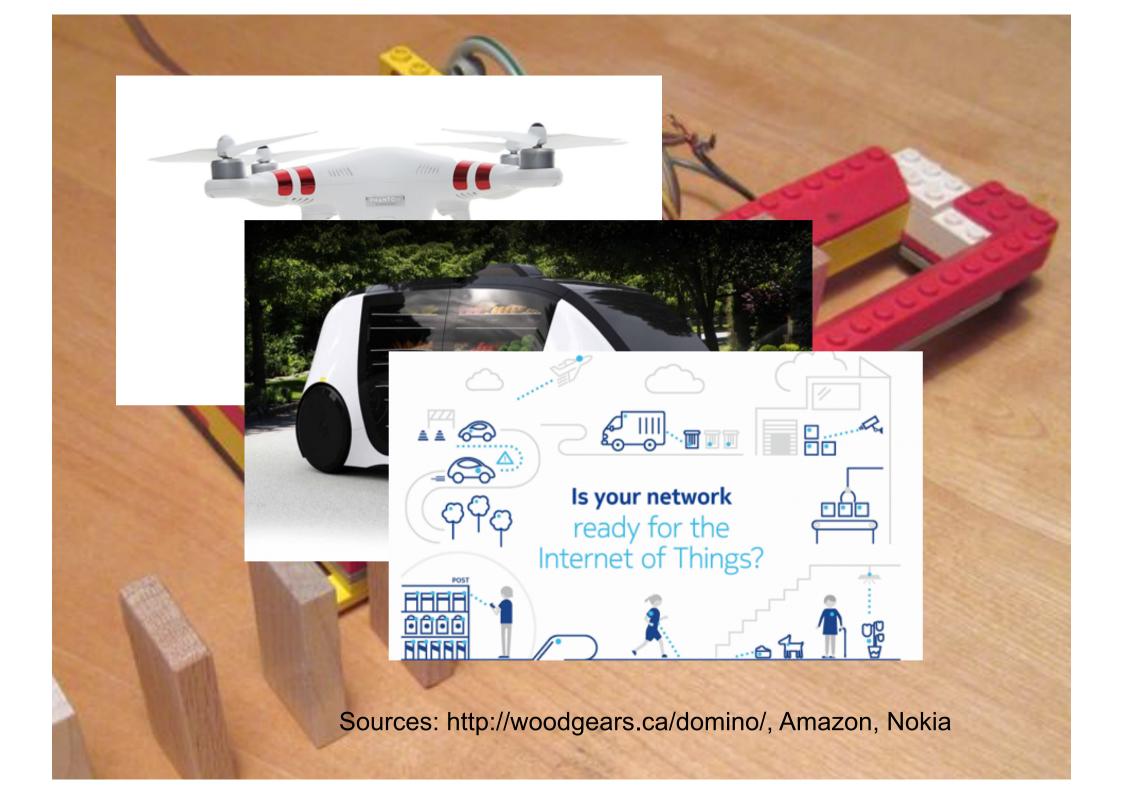
(Figures and audio clips removed from this file, see http://www.sleepmusicalization.net)

Machine learning vs. creativity

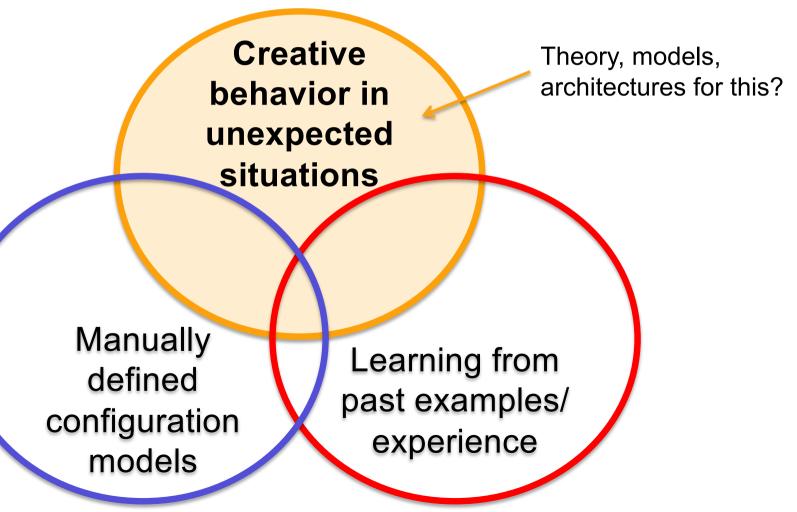
Machine Learning Problems vs. Creative Problems

Machine learning problems	Creative problems
Well-specified (e.g., "Learn to recognize faces in images")	Ill-defined, open-ended (e.g. "write a poem")
Have obvious and objective success criteria (e.g. recognition accuracy)	Have subjective and non- explicit criteria (e.g. when is a poem good?)
Success can be measured with relative ease (e.g. evaluate on test set)	Evaluation cannot be computed easily (e.g. ask subjects to evaluate)

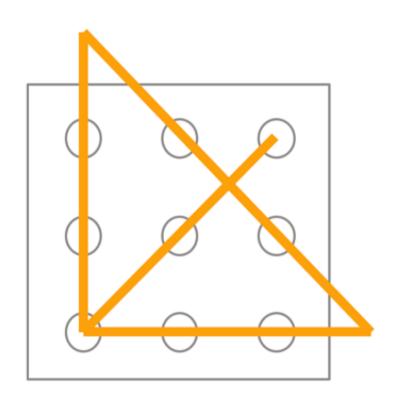
Uses of ML in Computational Creativity

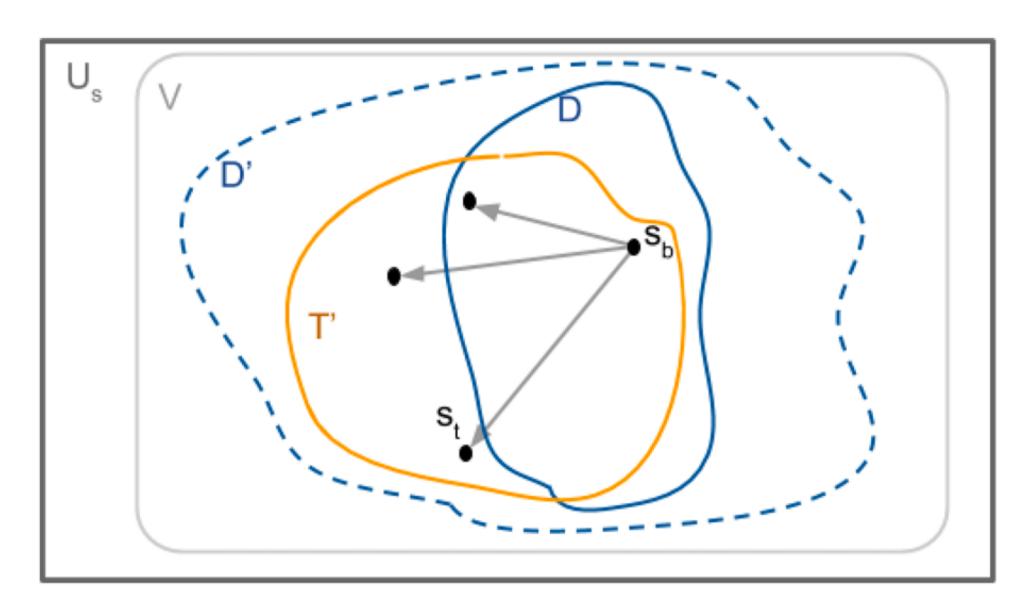

According to the four perspectives to creativity:

- Producer: learn skills, develop taste, model emotions or emotional responses, ...
- Process: use generative models, GANs etc., solve subtasks related to adaptivity, ...
- Product: recognize what is novel, predict the value of artefacts, ...
- Press: predict reactions; generate framings


Creatively self-adaptive software

A new research area




Creatively Adaptive Software

How to design SW that can surprise (in a useful way)

Design of self-adaptive SW that affords novelty, surprise, value, intention and self-determinism

Goal awareness	The system's ability to recognize and reason about its own goals.
Context awareness	The system's ability to have knowledge of the external systems or objects interacting with it.
Domain awareness	The system's ability to interpret its domain knowledge.
Resource awareness	The system having knowledge of all the resources at its disposal.
Strategy awareness	The system's ability to comprehend the available adaptation strategies and their relevance to emerging adaptation needs.

Enactor awareness	The system's ability to have knowledge of the available enactors and their collective competence.
Probe awareness	The system's ability to gain knowledge and control all available instrumentation.
Time awareness	The system's ability to keep history of events, such as interactions, activities, adaptations and contextual changes, exploiting the data for predicting future phenomena, e.g., usage patterns, failures, threats etc.
Hypothesis awareness	The system's ability to envision and assess adaptations that it has not implemented yet, that can improve its behaviour.

Conclusion

Computational creativity:

Producer
Process
Product
Press

"the philosophy, science and engineering of computational systems which, by taking on particular responsibilities, exhibit behaviours that unbiased observers would deem to be creative"

- Colton and Wiggins 2012

Thank you

Hannu Toivonen

University of Helsinki hannu.toivonen@cs.helsinki.fi www.cs.helsinki.fi/hannu.toivonen