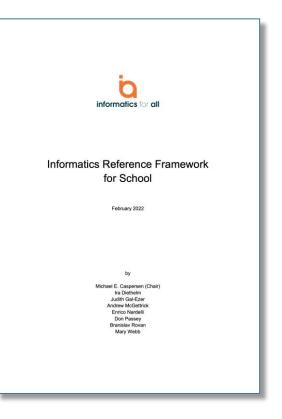
### Informatics Reference Framework for School (IRF4S) Developed by "Group of 8"

Michael E. Caspersen (Chair) It-vest – networking universities, Denmark

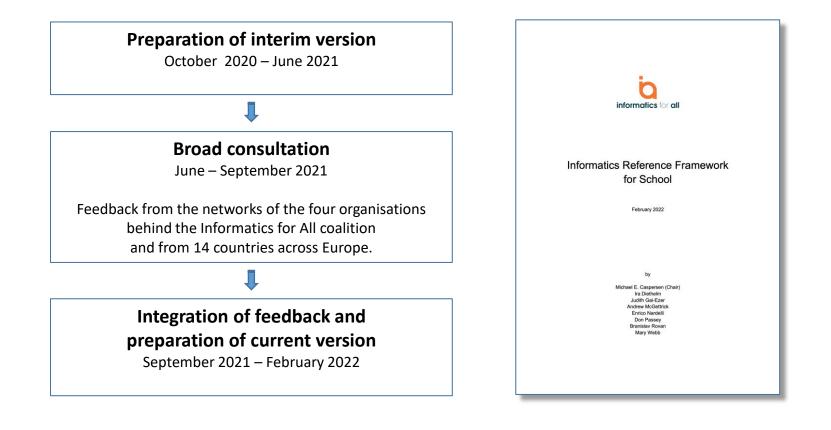
Ira Diethelm University of Oldenburg, Germany

Judith Gal-Ezer The Open University of Israel


Andrew McGettrick Strathclyde University, Scotland

Enrico Nardelli University of Roma, "Tor Vergata"

**Don Passey** Lancaster University, UK


Branislav Rovan Comenius University, Slovakia

Mary Webb King's College London, UK





### Informatics Reference Framework for School (IRF4S) Key activity 2020-2022



informatics for all

## Informatics Reference Framework for School (IRF4S) Characteristics

- Synthetic and short
  - 17 pages
- A minimum set of high-level common requirements
  - Room for national communities to derive curricula tuned to local culture and needs while coherent with a common European vision of Informatics in School
- An enduring foundation of 11 core topics
  - Foundational and invariant terms possessing temporal robustness
- Contemporary context and implications
  - A brief contemporary interpretation of the core topics illustrating richness, relevance for all (potential specialisation topics)
- Indicators of outcomes (annex)
  - These are not intended to be prescriptive and are provided for illustrative purposes only to stimulate thinking and action of cirricula designers.
- Future work
  - Guidelines for *using* the framework (ready)
  - Further elaboration on specialisation topics (in progress)

#### **11 Core topics**

Data and information Algorithms Programming

Computing Systems Networks and communication

Human-computer interaction Design and development

Digital creativity Modelling and simulation

Privacy, safety and security

Responsibility and empowerment



#### **Table of Contents**

| 1. Preamble                                             | 1  |
|---------------------------------------------------------|----|
| 2. Informatics and Society                              | 2  |
| 3. A Common Informatics Reference Framework             | 4  |
| 4. The Informatics Reference Framework                  | 5  |
| 4.1 Introduction to the informatics reference framework | 5  |
| 4.2 Aims and objectives                                 | 5  |
| 4.3 Core topics                                         | 6  |
| 4.4 Contemporary context and implications               | 7  |
| 4.5 Examples of outcomes                                | 11 |
| 5. Concluding comment                                   | 11 |
| Annexes                                                 | 12 |
| A.1 The discipline of informatics                       | 12 |
| A.2 Indicators of outcomes                              | 13 |
| References                                              | 17 |

**Inclusion, diversity and gender** remain important issues in informatics education.

Inclusion is a fundamental principle.Diversity is a feature of inclusion.Gender concern is an issue of diversity.

The gender issue is a particular concern; engagement with informatics at an early age can **promote self-efficacy and tackle gender stereotyping** before prevailing views become entrenched.

Compulsory informatics education counteracts a tendency for girls to opt out and puts the onus on curriculum developers and teachers to create a curriculum that engages girls as well as boys.

## 4.2 Aims and objectives

At the end of upper secondary education, pupils will skilfully be able to:

- **1. Use** digital tools in a conscious, responsible, confident, competent, and creative way .
- **2. Understand** the principles and practices of informatics and their multifaceted applications .
- 3. Analyse, design, frame and solve problems "informatically" .
- 4. Creatively develop computational models to investigate and communicate about phenomena and systems .
- **5. Identify and discuss** ethical and social issues associated with computational systems and their use, potential benefits, and risks .

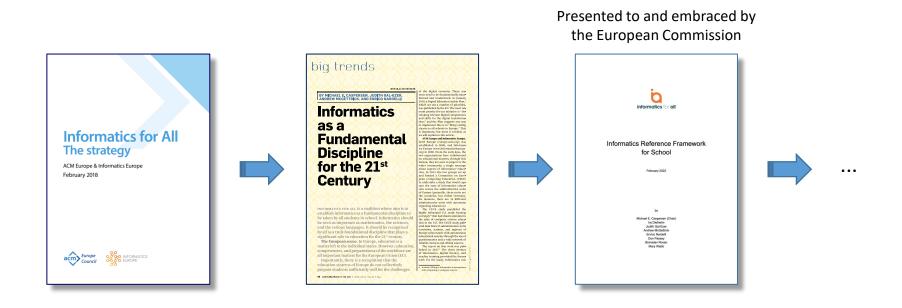
# 4.3 Core topics

Three examples

| Core topic areas               | Description                                                                                                                                                                                                                 |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data and information           | Understand how data are collected, organised, analysed and used to model, represent and visualise information about real-world artefacts and scenarios.                                                                     |
| Human-computer interaction     | Evaluate, specify, develop and understand interaction between people and computing artefacts.                                                                                                                               |
| Responsibility and empowerment | Critically and constructively analyse concrete computing artefacts as well as<br>advanced and potentially controversial techniques and applications of<br>informatics, particularly from an ethical and social perspective. |

All 11 core topics are described using succinct descriptors (see table 1, page 6)

## **4.4 Contemporary context and implications**


In addition, core topics are described more elaborately and with references to more specific topics:

Data and information – data science Algorithms and programming – programming languages Computing systems – artificial intelligence, machine learning Human-computer interaction – computer graphics, virtual reality, augmented reality Responsibility and empowerment – social networks, automated decision-making, bots

An elaborate presentation is provided on page 7-10 A brief additional document will be provided on the specific topics

# From Vision to Strategy to Unified Framework

... to Informatics for All





Substantial European collaboration to implement Informatics for All

# Some next steps (2022-2023)

Dissemination of the framework

- Translation into various European languages
- Discussion with and among national teacher communities
- Embracing the framework and pushing it politically

#### Two additional documents in pipeline

- Designing and Implementing a Concrete Informatics Curriculum for School
- Contemporary interpretation of core topics potential specialisation areas

#### Article in Inroads

• Late 2022/early 2023

#### Workshop at ITiCSE 2023

• Report of national progress, ...