
Informatics Europe: 19th European Computer Science Summit
AI and the Future of Informatics Education Workshop
Session 2: The impact of AI on Informatics
curricula and educational practices

Should we still teach "Programming"?

Thomas R. Gross

Department Informatik
ETH Zürich
Copyright (c) Thomas Gross 2023
All rights reserved.

Disclaimer
§ I do not know the answer(s).

§ Maybe more than one answer

§ These comments are my personal view and not cleared with
my institution or a (national) Informatics Association
§ Based on research and teaching at several institutions

§ Design and implementation of compilers, programming tools,
networking and computer systems

§ Teaching the last 8 years "Introduction to Programming" to 1st
semester computer science students at ETH Zurich

2

You must have heard or seen ...

3

You must have heard or seen ...

4

A number of minor issues

§ How good/relevant are these tools for "Introduction to
Programming"?

§ Have we reached the end of programming?

§ Do these tools make teaching programming {unnecessary |
trivial}

6

Programming?

7

«Educators, generals, dieticians, psychologists, and
parents program. Armies, students, and some societies
are programmed.»

Alan Perlis
(Foreword to «Structure and Interpretation of Computer

Programs», H. Abelson and G. J. Sussman, 1985)

Programming?

§ Programming ⊂ Software Engineering
§ Software Engineering ⊂ Programming

8

Programming?

§ Related to "Computational Thinking"

§ Permeates different groups

§ Reflection

§ High-school curricula

§ Scratch, Logo and other block programming languages

§ Other languages (from Python to Java to)

§ Data analysis for domain experts

§ (University-level) programming as foundation for system
design 9

(University-level) programming and I2P
§ I2P: Introduction to Programming
§ Concepts, not syntax
§ Foundation for various subfields
§ Must be mastered to appreciate wide range of topics (AI,

networking, security, program verification, computer vision,
user interfaces, ...)

11

Programming (in the context of CS education)

«Programming as universal activity» by Vinton Cerf, CACM
March 2016, vol 59(3) p 7

§ Analyzing problems

§ Breaking them down into manageable parts

§ Finding solutions

§ Integrating the results

12

Summary I2P@ETH

§ Programming as foundation for system design

§ Imperative programming (w/ class-based OOP)

§ Practical slant ("Programming+")

§ Testing (JUnit)

§ Debugging, Design/partitioning

§ Leverage IDE

§ Optional practice problems (some new each year)

13

Overview

§ How good/relevant are LLM tools (programmer assistants)
for "Introduction to Programming"?

§ I2P as part of the ETH Computer Science B.Sc. program

§ Focus on one tool: GitHub Copilot

15

Copilot – friend or foe?
§ General-purpose languages (e.g., Algol 60, FORTRAN IV)

replaced assembly language programming

§ (Compile-time checking of) Types raised programming level

§ Object-oriented languages provide facilities to structure
(larger) programs

§ Parallel program generators avoid dealing with low-level
details

§ How can Copilot help? 16

17

Copilot for CodingBat

countCode

18

countCode

25

Copilot
§ Picked good name for method
§ Needed help with method parameter

§ Summary: ✓
26

§ Others reported similar observation
§ Copilot was trained on public repositories and popular

collections of programming problems
§ Copilot will know the answers to these problems
§ Also textbook problems like TowersOfHanoi, Fibonacci,

§ Copilot needed sometimes help with the structure
§ Method and method parameter type(s)
§ First suggestion often a "literal parameter" 27

E Berger, Coping w/ Copilot

Copilot performance for other tasks

§ "New" (not from a repository or textbook)
§ One task/week, wit start in Week 4 or 5

§ Comes with small (sample) test suite
§ Students should write tests

§ Increasing difficulty/size
§ Optional for students but must be done within a week to be graded

§ Step 1: Feed task description to Copilot

28

Tasks 2018

30

Week Size (Words) Topic Success
4 197 String-Addition: loops, arrays 0
5 456 Tool Rental: classes, arrays, iteration, JUnit 0
6 344 Valleys & Hills: arrays, data analysis, I/O 0
7 146 String Interleaving: recursion 0
8 151 List Reversal: references, working w/ classes 0
9 163 Class Puzzle: inheritance (w/o classes or driver) 0

10 600 Desk Calculator: inheritance, recursion 0
11 302 Data Analysis (FIFA): ArrayList<..>, Map<..> 0
12 194 Sublist Palindrome: Set<List<..>>, exceptions 100

Copilot

33

Copilot – hints and suggestions
§ Hints and interactions

§ Informal classification
§ Not a strict hierarchy
§ Identify "highest level" for hint

§ Rough classification
§ Experiments by G. Ponti

§ Preliminary

34

Hints – summary
§ Many tasks require hints

§ That is expected ...

§ Appropriate hints require knowledge of programming
concepts

40

Copilot – 2018 hints and suggestions

41

Week
Size

(Words) Topic
Total
Required Success

4 197 String-Addition: loops, arrays 4 100
5 456 Tool Rental: classes, arrays, iteration, JUnit 3 100
6 344 Valleys & Hills: arrays, data analysis, I/O 4 100
7 146 String Interleaving: recursion 2 0
8 151 List Reversal: references, working w/ classes 1 100
9 163 Class Puzzle: inheritance (w/o classes or driver) 12 100

10 600 Desk Calculator: inheritance, recursion 5 100
11 302 Data Analysis (FIFA): ArrayList<..>, Map<..> 3 100
12 194 Sublist Palindrome: Set<List<..>>, exceptions 0 100

Hints – summary
§ Many tasks require hints

§ That is expected ...

§ Appropriate hints require knowledge of programming
concepts
§ There is no free lunch
§ Unless your task description matches completely

44

Acknowledgments
§ Michael Faes, Gaurav Parthasarathy, Felix Wolf

§ Co-authors of programming problems

§ Giacomo Ponti
§ Experiments with Copilot

46

Discussion
§ Copilot is not an automatic program generator
§ Copilot seems to expect a fairly skilled pair programmer

§ May use advanced language features
§ Solution to early problem uses classes and generics

§ Copilot encourages good programming practice
§ Comments, good examples in real-life setting

§ Student must (still) understand unit tests, carefully read
problem description
§ Text understanding crucial skill, adversary reading/analysis
§ Requirements analysis 48

50

The end of programming?

51

Issues outside of scope
§ Use of LLM tools to support teaching

§ Task development, individual feedback, grading, ...

§ Security implications

§ IP issues
§ ... and many more

52

Should we teach programming? (My take)

§ Depends on the student population/B.S. program design

§ All students? High school? Kindergarden?

§ Programming the "Latin of the 21st century"?

§ Is Scratch/Logo/… the best way to educate (future) digital citizens?

§ System designers and implementors

§ No alternative yet

53

Should we teach programming? (Your input)

§ Should the answer depend on the student’s level

§ What are good levels?

§ K-12? Kindergarden? Secondary schools? Tertiary? University?

§ For each group, what is the answer?

§ What should be the focus of ”Programming” ?

§ Text understanding? Analytical/Critical thinking?

§ Testing

§ System design and analysis

§ Use of tools 54

Related aspects – Teaching Programming

§ Student practice a big problem

§ Must synthesize solution

§ Partition problems into sub-problems, find solutions, integrate
results

§ Many students may underestimate importance of practice
(and effort required)

§ Evidence that practice is crucial

§ Exam: 2 hrs live programming plus 40 min written test (foundations)

55

Concluding remarks

§ LLM Tools (Copilot) – the end of programming?
§ Not really for B.S. CS students that design future systems
§ Assistance – helpful for skilled programmer, challenging for others

§ Students must still master concepts

§ Copilot implications (for I2P)
§ Even more emphasis on testing & debugging & requirements analysis

§ Challenges and research issues
§ Student engagement: may ignore practice (even more than now)

§ Interface (human) programmer <--> tool (programmer assistant) 56

