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Disclaimer
§ I do not know the answer(s).

§ Maybe more than one answer

§ These comments are my personal view and not cleared with 
my institution or a (national) Informatics Association
§ Based on research and teaching at several institutions

§ Design and implementation of compilers, programming tools, 
networking and computer systems

§ Teaching the last 8 years "Introduction to Programming" to 1st 
semester computer science students at ETH Zurich
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You must have heard or seen ...
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You must have heard or seen ...
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A number of minor issues

§ How good/relevant are these tools for "Introduction to 
Programming"?

§ Have we reached the end of programming?

§ Do these tools make teaching programming {unnecessary | 
trivial}
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Programming?
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«Educators, generals, dieticians, psychologists, and 
parents program. Armies, students, and some societies 
are programmed.»

Alan Perlis
(Foreword to «Structure and Interpretation of Computer 

Programs», H. Abelson and G. J. Sussman, 1985)



Programming?

§ Programming  ⊂ Software Engineering
§ Software Engineering ⊂ Programming
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Programming?

§ Related to "Computational Thinking"

§ Permeates different groups 

§ Reflection

§ High-school curricula

§ Scratch, Logo and other block programming languages

§ Other languages (from Python to Java to ....)

§ Data analysis for domain experts

§ (University-level) programming as foundation for system 
design 9



(University-level) programming and I2P
§ I2P: Introduction to Programming
§ Concepts, not syntax
§ Foundation for various subfields
§ Must be mastered to appreciate wide range of topics (AI, 

networking, security, program verification, computer vision, 
user interfaces, ...)
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Programming (in the context of CS education)

«Programming as universal activity» by Vinton Cerf, CACM 
March 2016, vol 59(3) p 7  

§ Analyzing problems

§ Breaking them down into manageable parts

§ Finding solutions

§ Integrating the results
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Summary I2P@ETH

§ Programming as foundation for system design

§ Imperative programming (w/ class-based OOP)

§ Practical slant ("Programming+")

§ Testing (JUnit)

§ Debugging, Design/partitioning

§ Leverage IDE

§ Optional practice problems (some new each year)
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Overview

§ How good/relevant are LLM tools (programmer assistants)  
for "Introduction to Programming"?

§ I2P as part of the ETH Computer Science B.Sc. program

§ Focus on one tool: GitHub Copilot
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Copilot – friend or foe?
§ General-purpose languages (e.g., Algol 60, FORTRAN IV) 

replaced assembly language programming

§ (Compile-time checking of) Types raised programming level

§ Object-oriented  languages provide facilities to structure 
(larger) programs

§ Parallel program generators avoid dealing with low-level 
details 

§ How can Copilot help? 16
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Copilot for CodingBat



countCode
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countCode
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Copilot
§ Picked good name for method
§ Needed help with method parameter

§ Summary:  ✓
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§ Others reported similar observation
§ Copilot was trained on public  repositories and popular 

collections of programming problems
§ Copilot will know the answers to these problems
§ Also textbook problems like TowersOfHanoi, Fibonacci, ....

§ Copilot needed sometimes help with the structure 
§ Method and method parameter type(s)
§ First suggestion often a "literal parameter" 27

E Berger, Coping w/ Copilot 



Copilot performance for other tasks

§ "New" (not from a repository or textbook)
§ One task/week, wit start in Week 4 or 5

§ Comes with small (sample) test suite
§ Students should write tests

§ Increasing difficulty/size
§ Optional for students but must be done within a week to be graded

§ Step 1:  Feed task description to Copilot
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Tasks 2018
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Week Size (Words) Topic Success
4 197 String-Addition: loops, arrays 0
5 456 Tool Rental: classes, arrays, iteration, JUnit 0
6 344 Valleys & Hills: arrays, data analysis, I/O 0
7 146 String Interleaving: recursion 0
8 151 List Reversal: references, working w/ classes 0
9 163 Class Puzzle: inheritance (w/o classes or driver) 0

10 600 Desk Calculator: inheritance, recursion 0
11 302 Data Analysis (FIFA): ArrayList<..>, Map<..> 0
12 194 Sublist Palindrome: Set<List<..>>, exceptions 100



Copilot
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Copilot – hints and suggestions
§ Hints and interactions

§ Informal classification
§ Not a strict hierarchy
§ Identify "highest level" for hint

§ Rough classification
§ Experiments by G. Ponti

§ Preliminary
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Hints – summary 
§ Many tasks require hints 

§ That is expected ...

§ Appropriate hints require knowledge of programming 
concepts
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Copilot – 2018 hints and suggestions
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Week
Size 

(Words) Topic
Total 
Required Success

4 197 String-Addition: loops, arrays 4 100
5 456 Tool Rental: classes, arrays, iteration, JUnit 3 100
6 344 Valleys & Hills: arrays, data analysis, I/O 4 100
7 146 String Interleaving: recursion 2 0
8 151 List Reversal: references, working w/ classes 1 100
9 163 Class Puzzle: inheritance (w/o classes or driver) 12 100

10 600 Desk Calculator: inheritance, recursion 5 100
11 302 Data Analysis (FIFA): ArrayList<..>, Map<..> 3 100
12 194 Sublist Palindrome: Set<List<..>>, exceptions 0 100



Hints – summary 
§ Many tasks require hints 

§ That is expected ...

§ Appropriate hints require knowledge of programming 
concepts
§ There is no free lunch 
§ Unless your task description matches completely
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Discussion
§ Copilot is not an automatic program generator
§ Copilot seems to expect a fairly skilled pair programmer

§ May use advanced language features
§ Solution to early problem uses classes and generics

§ Copilot encourages good programming practice
§ Comments, good examples in real-life setting

§ Student must (still) understand unit tests, carefully read 
problem description
§ Text understanding crucial skill, adversary reading/analysis
§ Requirements analysis 48
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The end of programming?
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Issues outside of scope
§ Use of LLM tools to support teaching 

§ Task development, individual feedback, grading, ...

§ Security implications

§ IP issues
§ ... and many more
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Should we teach programming? (My take)

§ Depends on the student population/B.S. program design

§ All students?  High school?  Kindergarden?

§ Programming the "Latin of the 21st century"?

§ Is Scratch/Logo/… the best way to educate (future) digital citizens?

§ System designers and implementors

§ No alternative yet
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Should we teach programming? (Your input)

§ Should the answer depend on the student’s level

§ What are good levels?

§ K-12?  Kindergarden? Secondary schools?  Tertiary?  University?

§ For each group, what is the answer?

§ What should be the focus of ”Programming” ? 

§ Text understanding?  Analytical/Critical thinking?

§ Testing

§ System design and analysis

§ Use of tools 54



Related aspects – Teaching Programming

§ Student practice a big problem

§ Must synthesize solution

§ Partition problems into sub-problems, find solutions, integrate 
results

§ Many students may underestimate importance of practice 
(and effort required)

§ Evidence that practice is crucial

§ Exam: 2 hrs live programming plus 40 min written test (foundations)

55



Concluding remarks

§ LLM Tools (Copilot) – the end of programming?
§ Not really for B.S. CS students that design future systems
§ Assistance – helpful for skilled programmer, challenging for others

§ Students must still master concepts

§ Copilot implications (for I2P)
§ Even more emphasis on testing & debugging & requirements analysis

§ Challenges and research issues
§ Student engagement: may ignore practice (even more than now)

§ Interface (human) programmer <--> tool (programmer assistant) 56


