

Sustainable Computing for Fluid Dynamics via Physics-Informed Surrogates

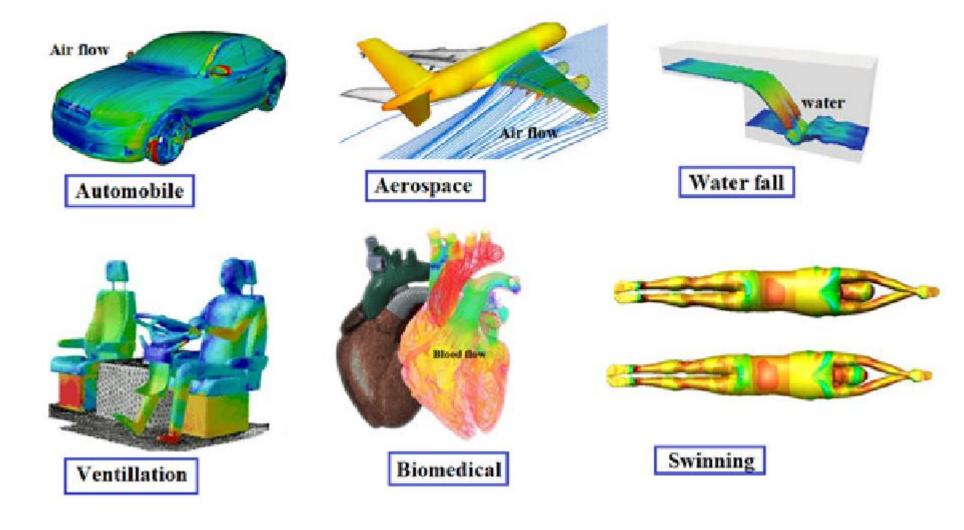
Gabriele Gianini

w/Luigi Ciceri, Corrado Mio, Jianyi Lin

Green ICT & ICT for Green Workshop, 29 October 2025 ECSS 2025 - European Informatics Leaders Summit, Rennes

Computational Fluid Dynamics (CFD)

- CFD is the field of numerical simulation of flow-related problems
- It finds application in a number of diverse domains



PHILOSOPHICAL TRANSACTIONS

rsta.royalsocietypublishing.org

Review

Cite this article: Slotnick JP, Khodadoust A, Alonso JJ, Darmofal DL, Gropp WD, Lurie EA, Mavriplis DJ, Venkatakrishnan V. 2014 Enabling the environmentally clean air transportation of the future: a vision of computational fluid dynamics in 2030. Phil. Trans. R. Soc. A 372: 20130317.

http://dx.doi.org/10.1098/rsta.2013.0317

One contribution of 13 to a Theme Issue 'Aerodynamics, computers and the environment'.

Subject Areas:

environmental engineering

Enabling the environmentally clean air transportation of the future: a vision of computational fluid dynamics in 2030

and

Coal and

biomass

combustion

Combustion

in Fluidized

Liquid and

combustion

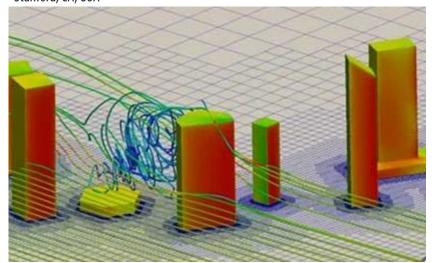
In-cylinder

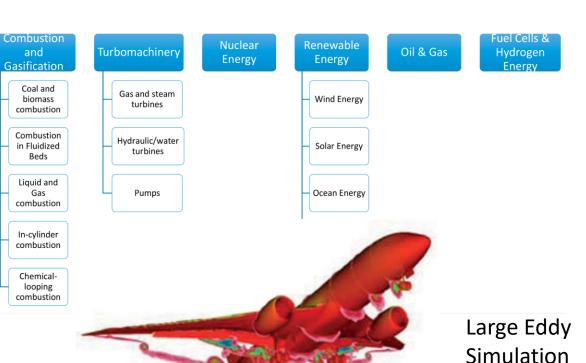
combustion

Chemicallooping combustion

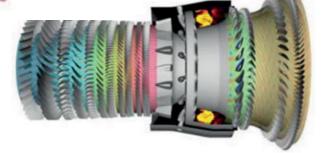
Jeffrey P. Slotnick¹, Abdollah Khodadoust¹, Juan J. Alonso², David L. Darmofal³, William D. Gropp⁴, Elizabeth A. Lurie⁵, Dimitri J. Mavriplis⁶ and Venkat Venkatakrishnan⁷

¹Flight Sciences, The Boeing Company, Huntington Beach, CA, USA ²Department of Aeronautics and Astronautics, Stanford University, Stanford, CA, USA





Turbo engine **Digital Twins**



Key role in the design of efficient transportation, as well as urban landscapes design

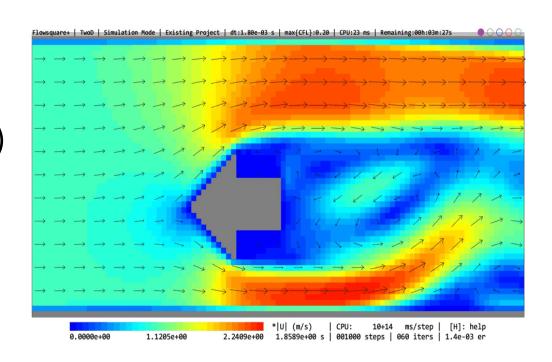
The task

Numerically predicting behavior of fluids

Motion, forces, transport of heat/mass/momentum

By solving the governing physical equations, e.g. Navier-Stokes' under given

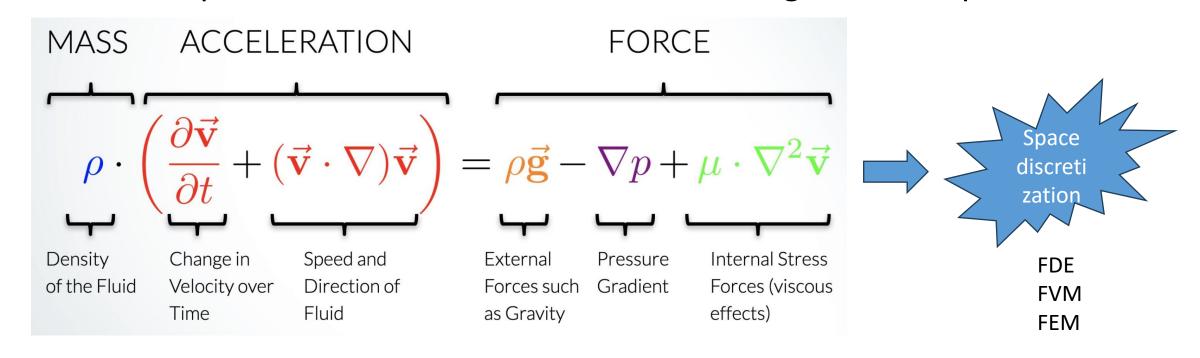
- Geometry/domain
- Physical <u>params</u>: **ρ** (density), **μ** (viscosity)...
- Boundary conditions (BCs)
- Initial conditions (ICs for transient problems)
 - Inlet fields (velocity/mass-flow, temperature)
 - Outlet fields (pressure/zero-gradient)
 - Walls (no-slip/slip, heat flux/temperature...)
- Forcing (volumetric sources):
 - gravity/buoyancy, porous drag



Numerics (implicit but important): discretization (FVM/FEM), mesh/resolution, time stepping, solver tolerances

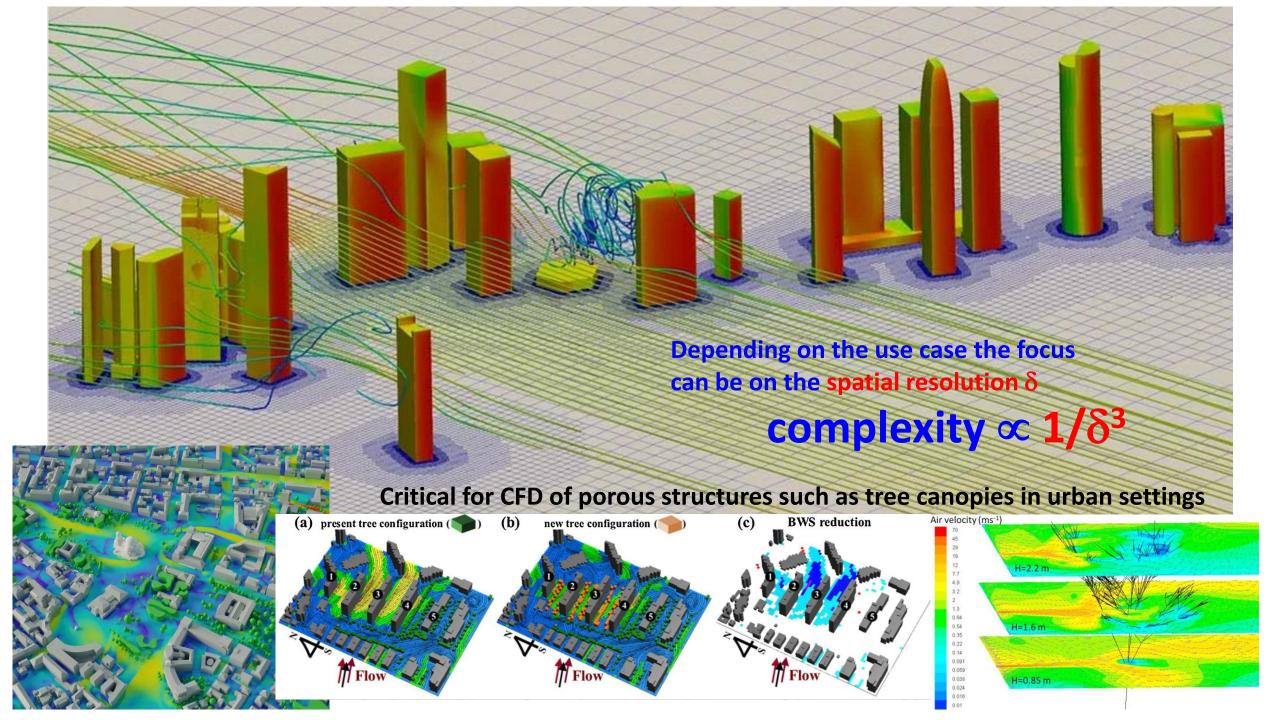
Navier-Stokes Partial Differential Equations

- Often the target quantities are
 - <u>Velocity</u> vector field v(x,y,z), <u>Pressure</u> field p(x,y,z),
- And the equations are the Navier-Stokes PDEs, e.g. for v and p



Steady incompressible, no forcing case

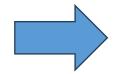
$$\rho(\mathbf{v} \cdot \nabla)\mathbf{v} = -\nabla p + \mu \nabla^2 \mathbf{v}$$



Laminar vs. Turbolent flows 1.0E 04 Reynolds number Flow pattern Description Typical size Peregrine Re < 5 No separation, laminar steady flow Flapping Wing MAV Mass [kg] Light Aircraft 5 < Re < 45 Pair of vortices, laminar steady flow 45 < Re < 150 Laminar vortex street, unsteady flow 1.0E-00 Unsteady Lift 150 < Re < 3 · 105 Transitional unsteady flow 1.0E 00cm 3 · 105 < Re < 3 · 106 Turbulent unsteady flow Re > 3 · 106 Turbulent vortex street, unsteady flow .0E+03 1.0E+05 1.0E+07 1.0E+09 https://www.idealsimulations.com/resources/reynolds-number/ Reynolds Number

These PDEs can become hard to solve in particular parameter ranges, especially with high \rightarrow more turbolent systems, roughly **Reynolds number**

$$Re = \frac{Inertial\ Force}{Viscous\ Force} = \frac{\rho VL}{\mu}$$



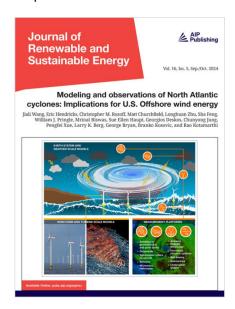
comput. complexity $\propto Re^{3-4}$

Journal of Renewable and Sustainable Energy

HOME BROWSE V COLLECTIONS V PUBLISH WITH US V ABOUT V

Volume 16, Issue 5

September 2024



Previous Article

Next Article >

RESEARCH ARTICLE | OCTOBER 23 2024

https://doi.org/10.1063/5.0217320

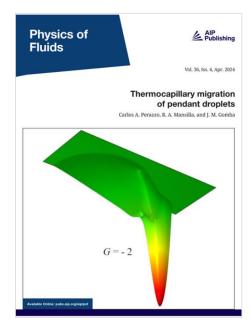
Computational fluid dynamics: Its carbon footprint and role in carbon reduction ≒

Special Collection: Flow, Turbulence, and Wind Energy

Xiang Yang 🛂 📵; Wen Zhang 📵; Mahdi Abkar 📵; William Anderson 📵

Volume 36, Issue 4

April 2024



RESEARCH ARTICLE | APRIL 02 2024

https://doi.org/10.1063/5.0199350

Estimating the carbon footprint of computational fluid dynamics [□] ₩

Check for updates

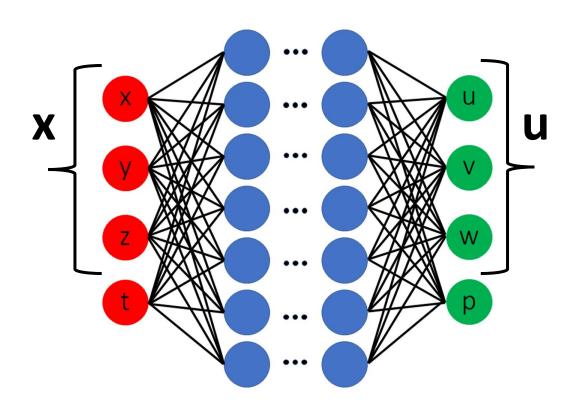
+ Author & Article Information

Physics of Fluids 36, 045109 (2024)

Order-of-magnitude estimated examples: footprint 10⁴ kg of CO₂ for single run

dependent on year, hw efficiency, PUE grid

Deep Learning approach: ANN as CFD surrogates



A typical Green Computing approach

Teacher-Student pattern

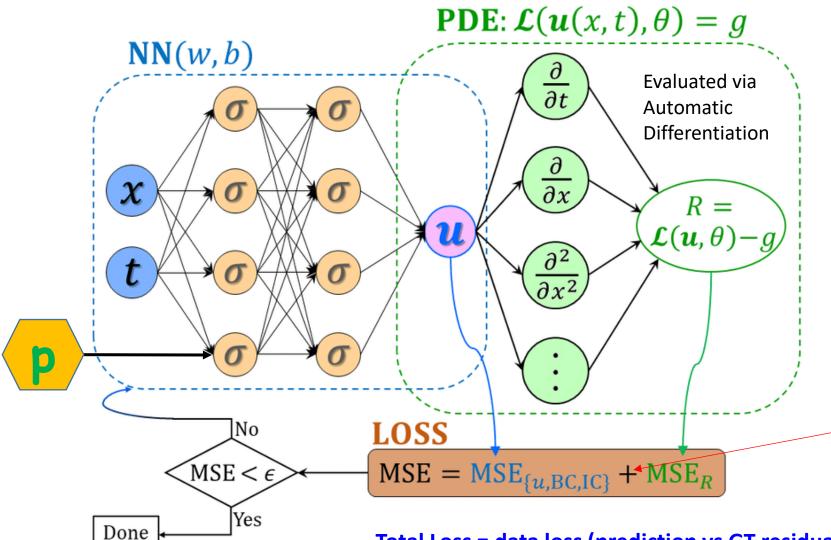
Trainig ANN with data from CFD runs

UP SIDE: can learn complex patterns DOWN SIDE:

- Without physics in the loss/architecture
 - ANNs waste data learning the laws,
 - lack conservation awareness
 - and collapse outside their training bubble
- Data hungry!

Physics Informed Neural Networks (PINNs)

Loss = Data loss + Physics loss



Deep Learning $\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T)$

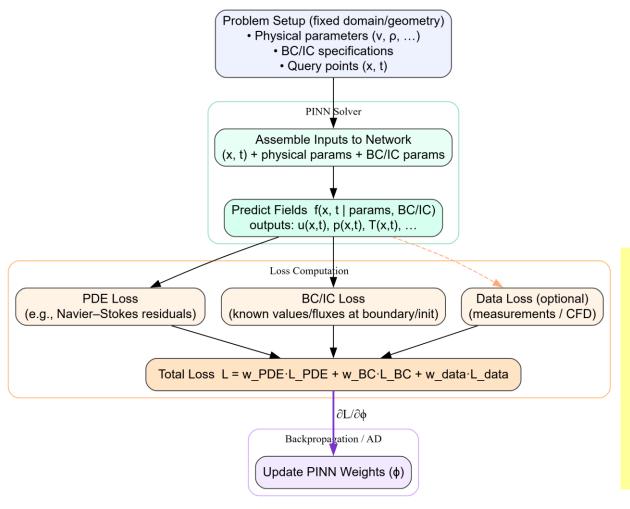
Physics Informed Neural Networks

$$L_e = \frac{1}{N_e} \sum_{i=1}^3 \sum_{n=1}^{N_e} |\epsilon_i^n|^2, \quad \begin{array}{l} \text{Residual of the RANS equations} \\ \text{(Unsupervised loss)} \end{array}$$

$$L_b = \frac{1}{N_b} \sum_{n=1}^{N_b} |\mathbf{U}_b^n - \tilde{\mathbf{U}}_b^n|^2, \quad \begin{array}{l} \text{Loos for the BCs} \\ \text{(Supervised loss)} \end{array}$$

Total Loss = $\frac{\text{data loss (prediction vs GT residuals)}}{\text{(PDE residuals/BC)}}$

PINNs learn $u_{\theta}(x,t|p)$



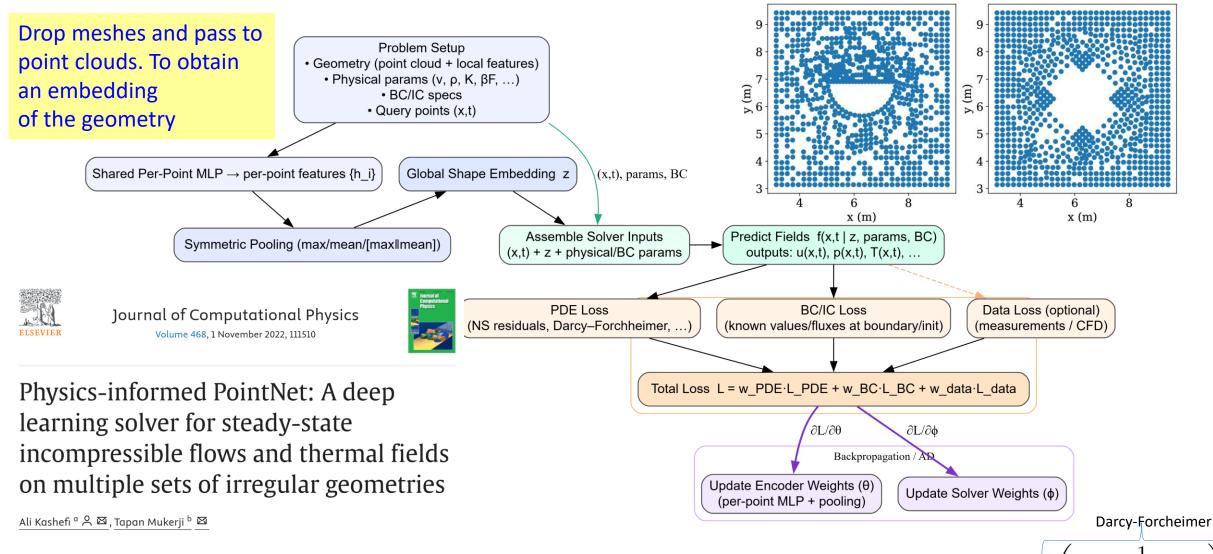
Predict u() conditional to/generalizing over

- Initial Conditions/Boundary Conditions
- Physical parameters θ : ν , ρ , K, β_F
- Adding $p = \{BC/IC/\theta\}$ as inputs to ANN and sampling on hypercube
 - interpolation OK,
 - extrapolation fragile

Domain Geometry is Hardcoded

- Possible geometrical awareness via inclusion of geometry parametrization in p: limited
- Must retrain for every new geometry!

PI-PointNets add geometry awareness via point-clouds

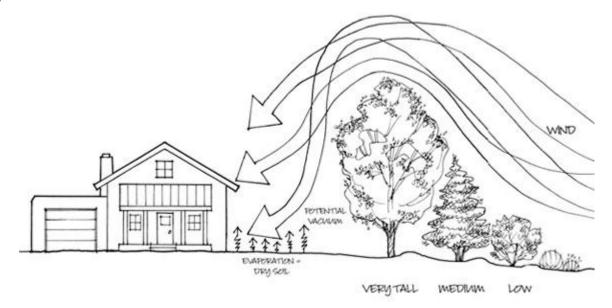


We applied **PIPointNets** to **hybrid free flow and porous medium** materials

$$\rho(\mathbf{v} \cdot \nabla)\mathbf{v} = -\nabla p + \mu \nabla^2 \mathbf{v} - \left(\mu D + \frac{1}{2}\rho F|\mathbf{v}|\right)\mathbf{v}$$
Navier-Stokes for incompressible fluid

Porous regions

- Flows that occur both through and around porous bodies at different scales are central to applications such as
- submerged breakwaters,
- rock-filled gabions,
- industrial filters,
- catalytic beds,
- heat exchangers
- coral reefs
- plant canopies
- windbreaks such as
 - vegetation barriers, fences, and perforated facades of buildings, used in various environmental and wind mitigation applications.



PI-GANOs map geometry via operators

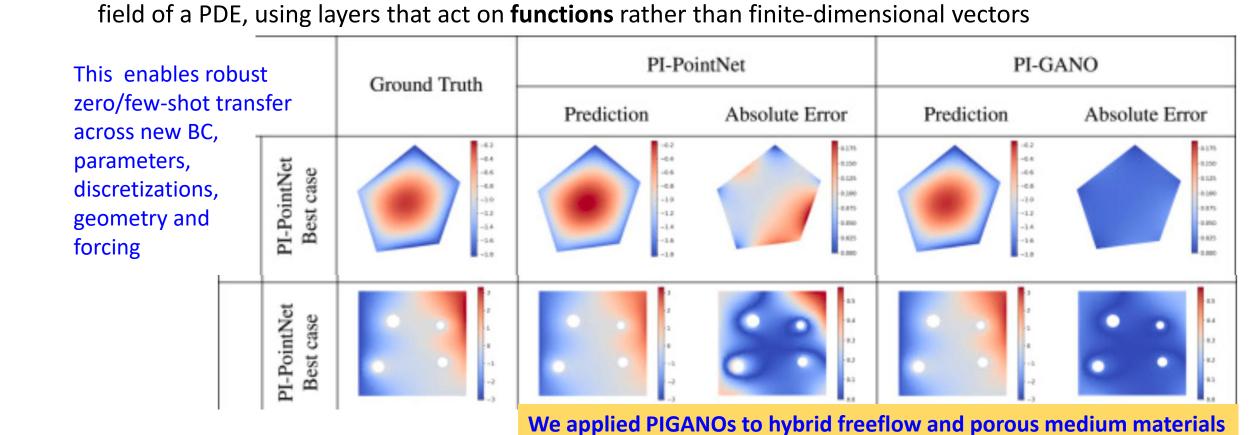
From PIPN to PIGANO you move

- from a "geometry-conditioned solution function"
- to "a geometry-aware neural operator,"

- Computer Methods in Applied Mechanics and
 Engineering
 - Volume 434, 1 February 2025, 117540

Physics-Informed Geometry-Aware Neural Operator

Weiheng Zhong 🖾 , Hadi Meidani 🙎 🖾



learns a map between function spaces: input fields (coefficients/forcing/BC/geometry) to the solution

Our architecture: from PI-PointNet++ to PI-GANO++

If accuracy degrades at sharp interfaces/ geometry has fine, multi-scale details one one can move **from PIPN to PIPN++**

 PIPN++ upgrades the encoder to a hierarchical, locality-aware version, adding multi-scale neighborhood features and local conditioning

We performed the same operation with **PIGANO** developing a **PIGANO++** architecture, which in analogy to PIPN++ brings

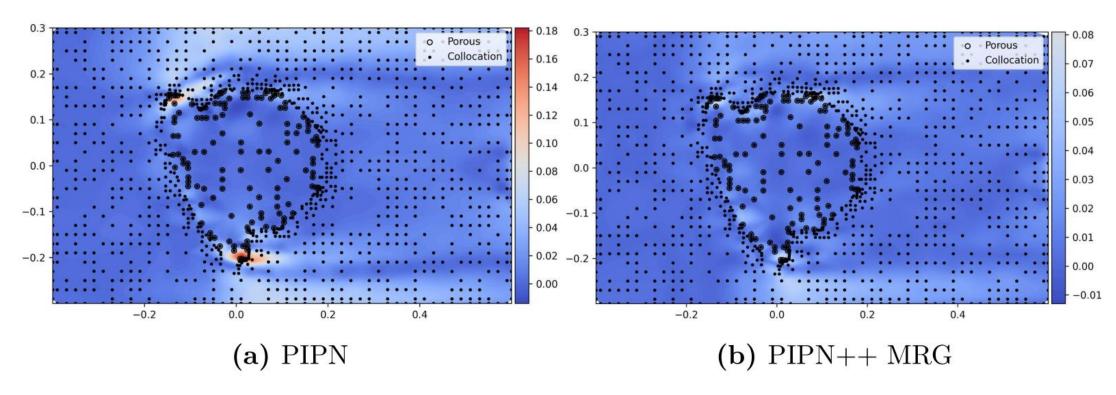
hierarchical, locality-aware geometry into the neural-operator setting

Yields better boundary/interface fidelity and generalization to fine geometric details—without giving up neural-operator flexibility across BCs, parameters, and meshes.

Our work:

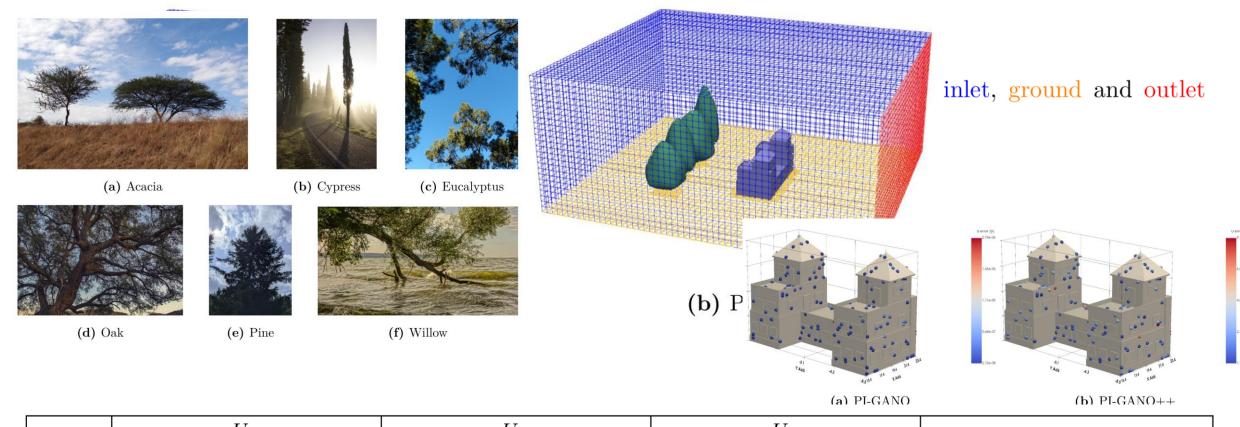
- developed PIGANO++
- applied PIPN++ and PIGANO++ to hybrid freeflow and porous medium materials

Example with 2D porous shape: PIPN++



Error landscape

MAE in windbreak case studies



	$U_{m{x}}$		$U_{m{y}}$		U_z		p	
Model	P.G.	P.G.++	P.G.	P.G.++	P.G.	P.G.++	P.G.	P.G.++
Total	$1.15 \cdot 10^{-7}$	$9.83 \cdot 10^{-8}$	$4.15 \cdot 10^{-8}$	$3.66 \cdot 10^{-8}$	$3.23 \cdot 10^{-8}$	$3.02 \cdot 10^{-8}$	$2.37 \cdot 10^{-12}$	$2.36 \cdot 10^{-12}$
Solid	$8.86 \cdot 10^{-8}$	$8.70 \cdot 10^{-8}$	$3.89 \cdot 10^{-8}$	$3.87 \cdot 10^{-8}$	$2.56 \cdot 10^{-8}$	$2.50 \cdot 10^{-8}$	$3.52 \cdot 10^{-12}$	$3.27 \cdot 10^{-12}$
Porous	$1.39 \cdot 10^{-7}$	$1.60 \cdot 10^{-8}$	$4.57 \cdot 10^{-8}$	$5.02\cdot10^{-8}$	$5.06 \cdot 10^{-8}$	$5.60 \cdot 10^{-8}$	$7.05 \cdot 10^{-12}$	$7.32 \cdot 10^{-12}$
Fluid	$1.14 \cdot 10^{-7}$	$9.51\cdot 10^{-8}$	$4.13 \cdot 10^{-8}$	$3.59\cdot10^{-8}$	$3.13 \cdot 10^{-8}$	$2.88 \cdot 10^{-8}$	$2.12\cdot 10^{-12}$	$2.09 \cdot 10^{-12}$
Max	$2.09 \cdot 10^{-6}$	$2.45 \cdot 10^{-6}$	$9.21 \cdot 10^{-7}$	$9.62\cdot 10^{-7}$	$9.39 \cdot 10^{-7}$	$1.06 \cdot 10^{-6}$	$8.69 \cdot 10^{-11}$	$8.51 \cdot 10^{-11}$

Average Times $CO_{2e} = PUE \cdot P_{IT} \cdot T \cdot CI$

Method	Mesh / Collocation	Training Time (x factor CFD)	Inference Time (per case)
OpenFOAM (Laminar)	86 k cells	_	26 min 20.4 min
PIPointNets	2500 pts	110 min (4.23)	12 ms
PIGANO	3000 pts	301 min (14.75)	14 ms
PIGANO++	3000 pts	309 min (15.15)	17 ms

HW: HPC cluster, 32 CPU cores + NVIDIA A100

(2D) ABC for PIPN, (3D) windbreaks for PI-GANO & PI-GANO++

MEDES 2025 - THE 17TH INTERNATIONAL CONFERENCE ON MANAGEMENT OF DIGITAL ECOSYSTEMS (HO CHI MIN CITY, VT)

Geometry-Aware Physics-Informed PointNets for Modeling Flows Across Porous Stuctures

Luigi Ciceri^a, Corrado Mio^b, Jianyi Lin^c, and Gabriele Gianini^a

^a Università degli Studi di Milano-Bicocca, Milan, Italy
l.ciceri7@campus.unimib.it, gabriele.gianini@unimib.it
^b Khalifa Universty of Science and Technology, Abu Dhabi, UAE
^c Università Cattolica del Sacro Cuore, Milan, Italy

Questions?