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Computational Fluid Dynamics (CFD)
• CFD is the field of numerical simulation of flow-related problems

• It finds application in a number of diverse domains



Large Eddy 
Simulation

Turbo engine
Digital Twins

Key role in the design of 
efficient transportation, 
as well as urban landscapes 
design 



The task
Numerically predicting behavior of fluids

• Motion, forces, transport of heat/mass/momentum

By solving the governing physical equations, e.g. Navier-Stokes’ under given 
• Geometry/domain

• Physical params: ρ (density), μ (viscosity)…

• Boundary conditions (BCs)

• Initial conditions (ICs for transient problems)

• Inlet fields (velocity/mass-flow, temperature)

• Outlet fields (pressure/zero-gradient)

• Walls (no-slip/slip, heat flux/temperature…)

• Forcing (volumetric sources): 

• gravity/buoyancy, porous drag

Numerics (implicit but important): discretization (FVM/FEM), mesh/resolution, time stepping, solver tolerances



Navier-Stokes Partial Differential Equations
• Often the target quantities are

• Velocity vector field v(x,y,z), Pressure field p(x,y,z), 

• And the equations are the Navier-Stokes PDEs, e.g. for v and p

Steady incompressible, 
no forcing case

Space 
discreti
zation

FDE
FVM
FEM



Depending on the use case the focus 
can be on the spatial resolution  

 complexity  1/3

Critical for CFD of porous structures such as tree canopies in urban settings



Laminar vs. Turbolent flows

These PDEs can become hard to solve in particular parameter ranges, especially with 
high → more turbolent systems, roughly Reynolds number 

      comput. complexity  Re3-4

https://www.idealsimulations.com/resources/reynolds-number/

Re from 1 to 109



https://doi.org/10.1063/5.0217320

https://doi.org/10.1063/5.0199350

Order-of-magnitude estimated examples: 
footprint 104 kg of CO₂ for single run 
• dependent on year, hw efficiency, PUE grid

https://doi.org/10.1063/5.0217320
https://doi.org/10.1063/5.0199350


Deep Learning approach: ANN as CFD surrogates

A typical Green Computing approach 

 Teacher-Student pattern

Trainig ANN with data from CFD runs

UP SIDE: can learn complex patterns

DOWN SIDE:

• Without physics in the loss/architecture 
• ANNs waste data learning the laws, 
• lack conservation awareness
• and collapse outside their training bubble

• Data hungry!

x u



Physics Informed Neural Networks (PINNs)
Loss = Data loss + Physics loss

Total Loss = data loss (prediction vs GT residuals) + Physics loss (PDE residuals/BC)

Evaluated via 
Automatic 
Differentiation

p

Physics Informed 
Neural Networks



Predict u() conditional to/generalizing over

• Initial Conditions/Boundary Conditions

• Physical parameters θ: ν, ρ, K, βF

• Adding p = {BC/IC/θ} as inputs to ANN 
and sampling on hypercube
• interpolation OK, 

• extrapolation fragile

PINNs learn uθ( x , t ∣ p ) 

Domain Geometry is Hardcoded

• Possible geometrical awareness via inclusion 
of geomety parametrization in p: limited

• Must retrain for every new geometry!



PI-PointNets add geometry awareness via point-clouds

Drop meshes and pass to
point clouds. To obtain 
an embedding 
of the geometry

We applied PIPointNets to hybrid free flow and porous medium materials

Darcy-Forcheimer

Navier-Stokes for incompressible fluid



Porous regions
• Flows that occur both through and around porous bodies at different 

scales are central to applications such as 

• submerged breakwaters, 

• rock-filled gabions, 

• industrial filters, 

• catalytic beds, 

• heat exchangers

• coral reefs

• plant canopies

• windbreaks such as 
• vegetation barriers, fences, and perforated facades of buildings, used in 

various environmental and wind mitigation applications. 



PI-GANOs map geometry via operators

From PIPN to PIGANO you move 

• from a “geometry-conditioned solution function”

• to “a geometry-aware neural operator,” 
• learns a map between function spaces: input fields (coefficients/forcing/BC/geometry) to the solution 

field of a PDE, using layers that act on functions rather than finite-dimensional vectors

This  enables robust 
zero/few-shot transfer 
across new BC, 
parameters, 
discretizations,
geometry and
forcing

We applied PIGANOs to hybrid freeflow and porous medium materials



Our architecture: from PI-PointNet++ to PI-GANO++

If accuracy degrades at sharp interfaces/ geometry has fine, multi-scale 
details one one can move from PIPN to PIPN++

• PIPN++ upgrades the encoder to a hierarchical, locality-aware version, 
adding multi-scale neighborhood features and local conditioning

We performed the same operation with PIGANO developing a PIGANO++ 
architecture, which in analogy to PIPN++ brings

• hierarchical, locality-aware geometry into the neural-operator setting

Yields better boundary/interface fidelity and generalization to fine 
geometric details—without giving up neural-operator flexibility across 
BCs, parameters, and meshes.

Our work:
- developed PIGANO++
- applied PIPN++ and PIGANO++ to hybrid freeflow and porous medium materials



Example with 2D porous shape: PIPN++

Error landscape



MAE in windbreak case studies



Average Times

Method Mesh / Collocation Training Time
(x factor CFD)

Inference Time
(per case)

OpenFOAM
(Laminar)

86 k cells - 26 min 20.4 min

PIPointNets 2500 pts 110 min (  4.23) 12 ms

PIGANO 3000 pts 301 min (14.75) 14 ms

PIGANO++ 3000 pts 309 min (15.15) 17 ms

HW: HPC cluster, 32 CPU cores + NVIDIA A100
(2D) ABC for PIPN, (3D) windbreaks for PI-GANO & PI-GANO++



MEDES 2025 - THE 17TH INTERNATIONAL CONFERENCE ON

MANAGEMENT OF DIGITAL ECOSYSTEMS (HO CHI MIN CITY, VT)



Questions?
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