
Background

BAC issues are the most common on the web
(OWASP A01, 2021)
Component-based JS frameworks generate
obfuscated and minified production code
Hypothesis: devs may considered safe to
disclose sensitive data to the front-end (ID,
token) or let it directly enforce RBAC/ABAC
policies
Framework internal APIs are often exposed in
prod, allowing an attacker to tamper with the
component tree, extracting sensitive data and
bypass weak server-side checks

Vulnerability condition
Overpowered front-end (OP). At least 1 feature
or resource already available to the front-end
for which the front-end applies all access
control policies
Exposed resources (ER). At least 1 network
request directed to a protected resource or
feature that is directly accepted by the web
server (IDOR, BOLA, MFLAC)
Overtrusted front-end (OT). At least 1 network
request that is accepted exclusively on the
user permission declared by the front-end
(HTTP parameter tampering)

RQ1 JS frameworks comparative analysis

RQ2 Prevalence and impact

RQ3 Countermeasures and best practices

Performing server-side checks on redirects,
implementing incremental authorization
techniques rather, keeping permission values
under back-end control, securing at least critical
functionality if major refactoring is not possible

Contributions
3 formal conditions for web GEM vulnerability
20 vulnerabilities on 49 entries, 3 official ack,
React, Vue, Ember found vulnerable to JCH
with no effective mitigation
3 case studies
State-of-art web scanners (Burp, OWASP ZAP)
not being capable of detecting web GEM-
based IDOR
Provided mitigation and best practices derived
from non vulnerable apps

Fig 1: Distribution of vulnerable applications per category

Fig.2 Distribution of vulnerability cases

Web GEMs: Broken Access Control Vulnerabilities
(BAC) in Large Web Front-Ends. An Empirical Study

Nicolò CAVALLI, Arnaud BLOUIN, Djamel KHELLADI, Olivier BARAIS

Future work
Large scale analysis on
Tranco’s top 100k
LLM/ML based detection of
sensitive HTTP bodies

