
Bioinformatics and its relation to 
data and computer science 

Jaap Heringa
Department of Computer Science

Faculty of Science
http://ibi.vu.nl, j.heringa@vu.nl

C
E
N
T
R

F
O
R
I
N
T
E
G
R
A
T
I
V
E

B
I
O
I
N
F
O
R
M
A
T
I
C
S
V
U

E



From anatomy to dynamics to (bio)informatics

• Anatomy, architecture

• Dynamics, mechanics

• Informatics

(Cybernetics – Wiener, 1948)

(Cybernetics has been defined as the science of 
control in machines and animals, and hence it 
applies to technological, animal and 
environmental systems)

- Genomics, bioinformatics, 
systems biology

History of Science 1632

1726

1948

time
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Bioinformatics originated in Utrecht



Hesper B, Hogeweg P. Bioinformatica: 

een werkconcept. Kameleon. 

1970;1(6):28–29. (In Dutch.) Leiden: 

Leidse Biologen Club

Dr. Paulien Hogeweg
Bioinformatics group

Bioinformatics originated in Utrecht



Hesper B, Hogeweg P. Bioinformatica: 

een werkconcept. Kameleon. 

1970;1(6):28–29. (In Dutch.) Leiden: 

Leidse Biologen Club

“… studying informatic processes in biotic 
systems”

Bioinformatics originated in Utrecht

Hogeweg P (2011) The Roots of Bioinformatics in Theoretical Biology. PLoS Comput Biol 7(3): 
e1002021. https://doi.org/10.1371/journal.pcbi.1002021



Anatomy, dynamics, informatics

Modern life sciences are data
sciences..

..and are becoming ever more 
inter-disciplinary 
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What is driving Life Sciences
Technology/high-throughput measurements

• Bio-sciences
– Genomics: HTP measurements; e.g. Sequencing

(NGS), Chip-seq, RNA-seq
– Proteomics, metabolomics

• X-ray, NMR, Mass Spectrometry
– Imaging, optical measurement techniques, single cell

measurements, single molecule tracking
– Lots of new stuff coming up…

Data generating technologies enabled by IT



It’s a nervous field....
• Changes all the time

– New measurement techniques
– New data time and again
– New technology, formats, standards, hypes
– New insights



It’s a nervous field....
• Changes all the time

– New measurement techniques
– New data time and again
– New technology, formats, standards, hypes
– New insights

• Compare this to studying ancient Greek
philosophy
– Not many new data
– Perhaps insights develop



Multicellular organisms:
Development of a zygote into a mature 

organism: many questions remain!



What makes a biological species: how are 
differences generated and what are the 

consequences of these differences?
• What is causing the difference between species? 

How do species arise?

• What is causing the difference between members 
of a population?



• Enormous diversity in scope:
– Part of organism – virus
– Single cell – bacterium, unicellular organisms
– Multicellular organisms (C. elegans 1000 cells, blue whale )

• Science of big numbers: about 42 trillion (˜5*1013) cells 
in human organism, divided over 210 different types of 
tissue. 

• A human cell holds about 42 million proteins. 
• Almost all cells contain DNA and many (shorter) RNA 

molecules 
• In addition to the genetical machinery, there is the gut

and oral microbiome having profound influences on 
health

Diversity in complexity and size



Important questions in biology and
medicine are dealing with the decoding of 

the ‘information’ that resides in the
genetic material.

How can this…… …lead to this?

DNA: Genotype Phenotype



Bioinformatics in the olden days
• Close to Molecular Biology: 

– (Statistical) analysis of protein and nucleotide 
structure

– Protein folding problem
– Protein-protein and protein-nucleotide interaction

• Many essential methods were created early 
on (1970s - .. )
– Protein sequence analysis (pairwise and multiple 

alignment)
– Protein structure prediction (secondary, tertiary 

structure)
– Protein interaction (docking) prediction



• Evolution was studied and methods 
created
– Phylogeny: evolutionary ancestry
– Phylogenetic reconstruction (clustering –

e.g., Neighbour Joining (NJ) method)

Bioinformatics in the olden days



We were making methods..
We were analysing data..

Trying to become important

But then….



… the bioinformatics big bang



The Human Genome Project (HGP)



The first global collaborative and inter-
disciplinary life science project with 
big data exchange via the internet

The Human Genome Project



The first global collaborative and inter-
disciplinary life science project with 
big data exchange via the internet

… Although “collaborative”should 
perhaps be taken with a grain of salt..

The Human Genome Project



The Human Genome Project

A nervous race between academy (HGC) 
and industry (Celera).
• At stake were patenting issues and the 

prospect of formidable impediment of 
progress in biomedical sciences

• The main character: Dr. Craig Venter (Celera)



Human genome project (1990 – 2003)

- ‘a milestone for humanity’
- performed using traditional sequencing techniques



Human genome project (1990 – 2003)

Craig Venter’s thread: human genome data 
might be made proprietary via patents by 
Celera Genomics

- ‘a milestone for humanity’
- performed using traditional sequencing techniques



The Human Genome -- 26 June 2000

Dr. Craig Venter

Celera Genomics

-- Shotgun method

Francis Collins (USA) /

Sir John Sulston (UK)

Human Genome Project



The Human Genome -- 26 June 2000

“Without a doubt, this is the 
most important, most 
wondrous map ever 
produced by humankind.”

U.S. President Bill Clinton on 26 June 2000 
during a press conference at the White House. 



26th June 2000

On 26 June 2000, leaders of the 
public project and Celera 
announce completion of a 
working draft of the human 
genome sequence. Collins and 
Venter are seen here on 
television with Ari Patrinos of the 
DoE, who cut through the 
animosity between the rival 
projects to broker the joint 
announcement at the White 
House in Washington.

Outside, celebrations continue with 
Eric Lander of the Whitehead 
Institute, Baylor's Richard Gibbs, 
and Waterston and Richard Wilson 
from Washington University.

On hand at a press conference that 
followed the White House genome 
announcement are (from l) Dr. Craig 
Venter, Celera; Dr. Ari Patrinos, U.S. 
Department of Energy, and Dr. Francis 
Collins, director, NHGRI. DOE and NIH 
are the two federal agencies involved in 
the Human Genome Project.

The press conference at the white 
house, hosted by President Bill Clinton
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public project and Celera 
announce completion of a 
working draft of the human 
genome sequence. Collins and 
Venter are seen here on 
television with Ari Patrinos of the 
DoE, who cut through the 
animosity between the rival 
projects to broker the joint 
announcement at the White 
House in Washington.

Outside, celebrations continue with
Eric Lander of the Whitehead
Institute, Baylor's Richard Gibbs, 
and Waterston and Richard Wilson 
from Washington University.

On hand at a press conference that 
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house, hosted by President Bill Clinton

All is well that 

ends well…



Human genome project - in numbers

• 23 chromosome pairs
• 20.000 genes 
• 2.9 billion base pairs 

(out of 3.3 billion)



Sequencing

Reconstructing 
a DNA 
sequence from  
many randomly 
selected short 
fragments 
(reads)

Reads may contain (experimental) Errors…

a handful of near-identical repeats longer than 200 bp (Fig. 3), 
whereas complex genomes, such as the human, usually have their 
repeat length determined by whether there has been an active 
LINE or SINE transposable element (usually around 4 kb in 
length for the former and between 500 bp and 1 kb for the latter). 
As the ability to produce longer read pairs (also referred to as 
‘mate pairs’ to distinguish them from the shorter read pairs) has 
only recently been optimized for next-generation technologies, 
assemblies of complex genomes have been rare.

The other main barrier for large, complex genome assem-
blies is the memory overhead for these methods. Although the 
de Bruijn data structure is compressed, all the methods use 
some sort of adjunct data structures in addition to the core 
de Bruijn graph to map the reads to the graph. These adjunct 
structures are critical for leveraging additional information  
required for accurate assemblies, such as read pair information. 

length from a reference assembly. The read lengths need only be over 
the k-mer length to generate a reasonable assembly (in theory, k must 
be over 15 bp, though in practice 19 is the lowest sensible k-mer, and 
larger k-mers are always better, although at the expense of having to 
generate more coverage to support these large k-mer sizes).

The first assembler to exploit this technology was Roche’s 454 
assembler, Newbler, which adapted the scheme specifically to handle 
the main source of error in 454 sequencing—namely, ambiguity in 
the length of homopolymer runs. In late 2007 and early 2008, sev-
eral second-generation de Bruijn graph assemblers were released for 
very short reads, compatible with the Solexa technology, including 
SHARCGS27, VCAKE28, VELVET29, EULER-SR30, EDENA31, ABySS32 
and ALLPATHS33. Some of these methods, such as VELVET, EULER-
SR and ABySS, explicitly use de Bruijn graphs, whereas other meth-
ods implicitly explore a de Bruijn graph—for example, constrained 
by read-pair behavior, as in ALLPATHS. The methods differ in how 
they treat errors and to what extent they use read-pair information. 
Read pairs are defined as two short DNA sequence reads generated 
from different ends of a longer DNA molecule—for example, 35-bp 
reads generated from both ends of a 500 bp fragment. One does not 
know the identity of the sequence between the read pairs, but one 
usually has an estimate of the length of the intervening sequence. 
As it is only marginally more expensive to generate short reads in 
read-pair format than as single reads, extremely high coverage of 
read pairs is routinely available. The more advanced de Bruijn graph 
assemblers29,30,32,33 can use read pairs to provide long assemblies. 
A particular challenge has been the two-base-encoding ‘color space’ 
of ABI SOLiD technology. In this two-base encoding, a single error 
produces a systematic translation error on all subsequent decoding of 
the bases for the rest of the read. In the context of an alignment, such 
an encoding scheme can be integrated into the alignment routine, 
and there is an argument that the double base encoding provides 
better discrimination between errors and observed differences. In de 
novo assembly, however, there is no reference. The solution has been 
to perform the assembly directly in color space and then ‘key’ the 
resulting color space assembly to one of the four feasible base-pair 
assemblies using either a small amount of traditional sequence or the 
presence of a known base at the start of each SOLiD read.

Whichever sequencing technology and assembly method are 
used, the ability to provide long assemblies critically requires that 
at least a proportion of the read pairs are longer than the longest 
common near-identical repeat in the genome. This varies con-
siderably between genomes. Bacterial genomes often have only 
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Figure 3 | Constructing and visualizing a de Bruijn graph of a DNA sequence. 
(a) An example de Bruijn graph assembly for a short genomic sequence 
without polymorphism. Sequence at top represents the genome, which is 
then sampled using shotgun sequencing in base space with 7-bp reads 
(step 1). Some of the reads have errors (red). In step 2, the k-mers in the 
reads (4-mers in this example) are collected into nodes and the coverage 
at each node is recorded. There are continuous linear stretches within the 
graph, and the sequencing errors create distinctive, low-coverage features 
through out the graph. In step 3, the graph is simplified to combine nodes 
that are associated with the continuous linear stretches into single, larger 
nodes of various k-mer sizes. In step 4, error correction removes the tips 
and bubbles that result from sequencing errors and creates a final graph 
structure that accurately and completely describes in the original genome 
sequence. (b) A full de Bruijn graph of two related plasmids that have  a 
locus in common. The de Bruijn graph was created with 30-bp k-mers. The 
open loops are regions that differ between the two plasmids, whereas the 
heavier lines indicate common regions.
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Shotgun Method - Pros and 
Cons

Celera versus Human Genome Project
• Pros

– Human labour reduced to minimum
• Cons

– Computationally demanding – O(n2) 
comparisons

– High error rate in contig construction
• Repeats as the main problem
• The human genome is very repetitious (~50%)



Next Generation Sequencing (NGS) 
• Massively parallel sequencing of millions to billions of 

short fragments
• Very fast

- (Sanger sequencing max 384 DNA samples in a single batch 
(run) in up to 24 runs a day)

• Huge amounts of data generated in single sequencing
experiment (many TBs)

• Much reduced cost (1 human genome: HGP 3 billion $ 
versus NGS ~10,000 $)

• Shorter fragments (reads) than with Sanger sequencing
o Many different techniques exist but based on approx. same 

principle. Differences reside mainly in chemical usage and the 
way fragments are stuck to the surface



Lex Nederbragt - http://flxlex.flavors.me/

Next Generation Sequencing

Source: Walter 
Pirovano, 
BaseClear

Technique used for 
Human Genome 
Project
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MinION (2015)

HiSeq 2500 System

Source: Walter Pirovano, BaseClear



NGS output

• Millions to a billion of sequenced short 
fragments
(data handling not easy)

• Can sequence either DNA or RNA 
sequences
– Abundance may be estimated (deep 

sequencing)
• What to do next? BIOINFORMATICS



Putting the reads together using 
bioinformatics

– De novo assembly 
of a genome

– Assembly using 
alignment onto a 
reference genome

18

De novo sequence assembly

● Overlapping reads are assembled into groups, 
so called contigs

Two main ways of stringing together the many 
short reads into a complete genome sequence



De novo sequencing - a contig
• Reconstructing a complete genome de novo 

requires testing possible overlaps between all 
possible pairs of reads and then building the 
whole genome together according to some 
criterion:

…AACTTCGCCCGATGGCTTTTA
TGGCTTTTAAACGCATT…

– A known and related problem in Computer Science is 
the Shortest Superstring Problem (SSP), where all 
fragments are strung up to produce the shortest 
overall string (i.e. genome). 

• However, the shortest possible string is not an ideal criterion 
because genomes have many repeating fragments (human 
DNA >50% repetitious)

overlap



Repetitive elements 
• Repeats can cause major problems to the 

assembler;
– Reads corresponding to two separate repeats may be 

collapsed in a single contig

July 2002 49

repeat copies as a separate contig. Repeats represent
a major challenge to assembly software. An assem-
bler’s utility depends in large part on detecting and
correctly resolving repeat regions. Resolving misas-
semblies in the finishing phases can be costly. 

Information about clone mates, combined with
knowledge about the distribution of clone sizes, may
help assembly programs to put some classes of
repeats together correctly. If a repeat is shorter than
the length of a clone insert, mate-pair information
is enough to separate the individual repeat copies
because each read within the repeat has an anchor-
ing clone mate in the nearby nonrepetitive region. 

Finishing
In practice, imperfect coverage, repeats, and

sequencing errors cause the assembler to produce
not one but hundreds or even thousands of contigs.
The task of closing the gaps between contigs and
obtaining a complete molecule is called finishing.
First, a program called a scaffolder uses clone-mate
information to order and orient the contigs with
respect to each other into larger structures called
scaffolds. Within a scaffold, pairs of reads span-
ning the gaps between contigs determine the order
and orientation of contigs, as Figure 1b shows.
Note that the physical DNA molecule has an eas-
ily determined direction, even though the textual
representation of DNA as a string of A, C, T, or G
characters appears to be directionless.

The gaps between contigs belonging to the same
scaffold are called sequence gaps. Although they
represent genuine gaps in the sequence, researchers
can retrieve the original clone inserts spanning the
gap and use a straightforward “walking” technique
to fill in the sequence. 

Determining the order and orientation of the
scaffolds with respect to each other is more diffi-
cult. The gaps between scaffolds are called physi-
cal gaps because the physical DNA that would span
them is either not present in the clone inserts or
indeterminable due to misassemblies. Filling these
gaps involves a large amount of manual labor and
complex laboratory techniques.

ASSEMBLY ALGORITHMS
Researchers first approximated the shotgun

sequence assembly problem as one of finding the
shortest common superstring of a set of sequences:
Given a set of input strings {s1, s2, ...}, find the short-
est string T such that every si is a substring of T. 

While this problem has been shown to be NP-hard,
there is an efficient approximation algorithm. This
greedy algorithm starts by computing all possible
overlaps between the strings and assigning a score to
each potential overlap. The algorithm then merges
strings in an iterative fashion by combining those
strings whose overlap has the highest score. This pro-
cedure continues until no more strings can be merged. 

While it can be argued that the shortest super-
string problem does not correctly model the assem-
bly problem, the first successful assembly algo-
rithms applied the greedy merging heuristic in their
design. For example, TIGR Assembler,4 Phrap,5 and
CAP36 followed this paradigm. 

Greedy algorithms are relatively easy to imple-
ment, but they are inherently local in nature and
ignore long-range relationships between reads,
which could be useful in detecting and resolving
repeats. In addition, all current implementations of
the greedy method require up to one gigabyte of
RAM for each megabase of assembled sequence,
assuming the genome was sequenced at 8X cover-
age. This limits their applicability on currently
available hardware to organisms with genomes of
32 Mbp or less. Such organisms include bacteria
and a few single-celled eukaryotes, but not plants,
mammals, or other multicellular organisms. 

These limitations spurred the development of
new algorithms. Two approaches exploit tech-
niques developed in the field of graph theory: one
that represents the sequence reads as graph nodes
and another that represents them as edges. 

Overlap-layout-consensus
The first approach, overlap-layout-consensus,7

constructs a graph in which nodes represent reads,
and edges indicate that the corresponding reads
overlap. Each contig is represented as a simple

rpt1Brpt1A

I

I II

II

III

III

Figure 2. Repeat
sequence. The top
represents the cor-
rect layout of three
DNA sequences. The
bottom shows a
repeat collapsed in
a misassembly.

Region in between the repeats 
is thrown out



Why bother with genomics?
• Human DNA contains ˜20k genes, encoding 

for proteins
– Many genes may encode multiple forms of protein 

(e.g. through alternative splicing)
• DNA also encodes many different types of 

functional RNA molecules
• The big challenge is finding out the function 

of these components in the cell and how they 
interact. 

• Cells and organisms are information
processing entities
– Understanding how they work will give us clues for 

avoiding or treating diseases.



Sequence

Structure

Function

Threading

Homology 
searching 
(BLAST)

Ab initio
prediction 
and folding

Function 
prediction 
from 
structure

Sequence-Structure-Function

impossible but for 
the smallest 
structures

very difficult

We can neither predict structure from sequence (‘folding problem’), nor predict 
function from structure. However, we can do the knowledge-based activities 
designated by the green arrows based on the homology principle (see earlier 
slides) thanks to the availability of curated and annotated databases

42



AlphaFold
Deep learning ‘solving’ protein folding problem

43



Searching for similarities
• The main question: what is the function of the 

new gene?

• The “lazy” investigation without doing 
experiments:
– Find a set of similar proteins
– Identify similarities and differences
– For long proteins it is often good to identify 

domains first and then compare the corresponding 
(sub)sequences separately

• A domain is a unit of function
• Multi-domain proteins have a compound function



Inferring homology from 
similarity

• Homology: sharing a common ancestor
– a binary property (yes/no)

• Common ancestry makes it more likely 
that genes share the same function
– It’s a nice tool:

When (a known gene) G is homologous to 
(an unknown gene) X, we gain a lot of
information on X by transferring what we 
know about G

CA

X G



TERTIARY STRUCTURE (fold)

Genome

mRNA

Proteome

Metabolome

DNA makes RNA makes Protein
From gene to function

gene



The functional network level

47



There are various
networks in the cell

• Gene regulation
• Protein-protein interaction
• Signalling
• Metabolomic
• Other
–These networks are interconnected
and function in a multi-level way –
should function adequately
(note that they are not really there)



Heterarchically-connected network
layers in the cell



Individual sequence differences 
may lead to different cellular 

behaviour at the network level…



Sequences become different during 
evolution 

Protein multiple sequence alignment



Evolution and three-dimensional protein 
structure information

What do we see if we colour code the space-filling  (CPK) protein model?
• E.g., red for conserved alignment positions to  blue for variable 

(unconserved) positions. 



• Homo sapiens (human) and (right) Saccharomyces cerevisiae (baker’s yeast). 

• Changes in controlling enzymes (boxes in red) and the 
pathway itself have occurred

Human Yeast

Network Evolution

Networks 
become 
different 
during 
evolution



Modelling vulval development in C. 
elegans

Caenorhabditis elegans

• 1mm long
• 1000 cells
• Intensively 

studied (Sydney 
Brenner started 
research in the 
1960s)



Cell fates and the onset of the 
vulva

Vulval precursor cells (VPCs) Anchor Cell (AC)



No AC 

no vulva

Anchor Cell (AC)Vulval precursor cells (VPCs)

Cell fates and the onset of the 
vulva





The entire network
comprises about 600 
nodes (places and
transitions) and 1000 

arcs.

The multicellular model contains genes, proteins and mi-RNA, and modelled
functionalities such as protein production, interaction, downregulation,  degradation
and signalling (transport) through time. 



“High-throughput sequencing for biology and medicine” Soon, Hariharan & Snyder, Molecular Systems Biology, 2013

NGS and cancer: Which genes cause it
For reference

http://www.nature.com/msb/journal/v9/n1/full/msb201261.html


• Exponential growth of databases

The data tsunami

Straight line 
implies 
exponential 
growth



The Economist on the data tsunami..

http://www.economist.com/node/21537922

Welcome to the yotta world
Big Data will flood the planet

“Data is the new oil” 

– Neelie Kroes



Faculty of Sciences

BIG DATA: TWO PROBLEMS - DATA LOSS AND 
DATA GROWTH

Nature news, 19 December 2013
• Computer speed and storage 

capacity is doubling every 18 
months and this rate is steady
(Moore’s law)

• DNA sequence data is 
doubling every 5-6 months 
over the last 3 years and looks 
to continue for this decade‘Oops, that link was the laptop of 

my former PhD student’
62



The champion of data storage?
• Storing all data of 2020 (50 zettabytes)?
• Ultra modern disk technology?
• Or a molecule that evolved over about 4.2 

billion years…



The champion of data storage?

DNA can store 1 
yottabyte of data 
on roughly 1 
gram!
George Church, Harvard Univ.

• Storing all data of 2020 (50 zettabytes)?
• Ultra modern disk technology?
• Or a molecule that evolved over about 4.2 

billion years…

1 zettabyte = 1021 bytes, 1 yottabyte = 1024 bytes



The champion of data storage?

DNA can store 1 
yottabyte of data 
on roughly 1 
gram!
George Church, Harvard Univ.

• Storing all data of 2020 (50 zettabytes)?
• Ultra modern disk technology?
• Or a molecule that evolved over about 4.2 

billion years…

1 zettabyte = 1021 bytes, 1 yottabyte = 1024 bytes

Reading out the information is 

getting better and better 

(sequencing), but ’writing’ DNA 

is still problematic



• Through (information) technology
– Political, societal (technology

application)
– Life sciences (bio-based economy)
– Health and quality of life

Information sciences are 
fundamentally changing the 

world



• Finding subatomic particles (Higgs boson)
• Large-scale surveillance
• Predicting longer term weather, landslide, 

earthquake (e.g. DeepMind)
• Predicting spread of disease (Google can

already do flu)
• Social trends

– Rapper Jay-Z in 2015 moved concert from
Stockholm to Gothenburg as Spotify’s big data 
analysis proved a larger fan base there

Where are we heading?



“Too often we forget that genius, too, 

depends upon the data within its reach, that 

even Archimedes could not have devised 

Edison’s inventions.”   Ernest Dimnet.

DAT
AData



THE FAIR DATA PRINCIPLE

69 Network Biomedicine - How valid is your pathway

• Data should be
– Findable, Accessible, Interoperable, Reusable
(Barend Mons, LUMC & DTL)

• Publishing existing and new datasets in semantically
interoperable format that can be understood by
computer systems. 

• By semantically annotating data items and metadata, 
we can use computer systems to (semi) automatically
combine different data sources, resulting in richer
knowledge discovery.

• Metadata all important



• Combination of all expertise to treat data well and 
durable in a project and beyond:
– Experiment design and data-design;
– Re-use of existing data where possible;
– Planning of the storage, networking and 

computing infrastructure;
– Data acquisition and processing;
– Data publishing in a format that allows 

functional interlinking of data(sets) as well as in 
a format suitable for long-term preservation.

FAIR DATA STEWARDSHIP

FAIR Data



• 2014: FAIR (Findable, Accessible, Interoperable, Reusable) 
data principles launched at Leiden Lorentz meeting (DTL 
driven)

• 2016: G20 adopt FAIR Principles
• 2017: Open European Science Cloud (EOSC) stipulates 

FAIR principles
• 2017: G7 adopt FAIR principles
• 2017: ELIXIR ESFRI bases its platforms on FAIR principles
• 2017: Science funders (e.g. NWO in The Netherlands) 

stipulate adherence 
• 2017: GO-FAIR initiative endorsed by Dutch, German and 

French Governments
• 2019: Open Science rolled out across Europe

FAIR DATA PRINCIPLESFAIR DATA



FAIR Data aims to support existing communities 
in enabling valuable scientific data and 
knowledge to be published and utilised in a 
‘FAIR’ manner.
Findable- (meta)data is uniquely and persistently identifiable. 
Should have basic machine readable descriptive metadata.
Accessible - data is reachable and accessible by humans and 
machines using standard formats and protocols.
Interoperable - (meta)data is machine readable and annotated with 
resolvable vocabularies/ontologies.
Reusable - (meta)data is sufficiently well-described to allow 
(semi)automated integration with other compatible data sources.

WHAT IS FAIR DATA?

Machines should be able to understand the data!



FAIR Data aims to support existing communities 
in enabling valuable scientific data and 
knowledge to be published and utilised in a 
‘FAIR’ manner.
Findable- (meta)data is uniquely and persistently identifiable. 
Should have basic machine readable descriptive metadata.
Accessible - data is reachable and accessible by humans and 
machines using standard formats and protocols.
Interoperable - (meta)data is machine readable and annotated with 
resolvable vocabularies/ontologies.
Reusable - (meta)data is sufficiently well-described to allow 
(semi)automated integration with other compatible data sources.

WHAT IS FAIR DATA?

Wilkinson et al, 
Nature Scientific Data, 2016



15 FAIR DATA PRINCIPLES SINCE 2016 
To be Findable: 
F1. (meta)data are assigned a globally unique and persistent identifier
F2. data are described with rich metadata (defined by R1 below)
F3. metadata clearly and explicitly include the identifier of the data it describes 
F4. (meta)data are registered or indexed in a searchable resource 
To be Accessible: 
A1. (meta)data are retrievable by their identifier using a standardized communications 
protocol 
A1.1 the protocol is open, free, and universally implementable
A1.2 the protocol allows for an authentication and authorization procedure, where necessary 
A2. metadata are accessible, even when the data are no longer available 
To be Interoperable: 
I1. (meta)data use a formal, accessible, shared, and broadly applicable language for 
knowledge representation.
I2. (meta)data use vocabularies that follow FAIR principles
I3. (meta)data include qualified references to other (meta)data 
To be Reusable: 
R1. meta(data) are richly described with a plurality of accurate and relevant attributes 
R1.1. (meta)data are released with a clear and accessible data usage license
R1.2. (meta)data are associated with detailed provenance
R1.3. (meta)data meet domain-relevant community standards 



Datasets expressed using one of the prescribed standards of the FAIR Data 
Protocol.

The original dataset is transformed into a FAIR format and proper 
metadata and license are added to produce a FAIR Data Resource. Original 
and the FAIR version can co-exist, each one fulfilling its own purpose.

FAIR Conversion

FAIR Data Resource

FAIR DATA RESOURCE



Raw data
(many formats)

FAIR download
(in local format)

Processed data
(primary storage format)

FAIR transformation

FAIR (meta)data
(RDF,XML etc.)

High-Performance
Analysis

ProvenanceInitial transformation

Analysis transformation



DISTRIBUTED ARCHITECTURE
OF FAIR DATA POINTS



SEMANTIC INTEROPERABILITY THROUGH RDF
(RESOURCE DESCRIPTION FRAMEWORK)

Unit of information: 
the data triple

Data interoperability

78

Linked data cloud



TRAFFICKING THE DATA HIGHWAY: THE POWER OF 
INTEROPERABILITY

106 concept clusters (Knowlets)
http://www.euretos.com/

BRAIN
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ELIXIR, EMBL-EBI and EOSC-Life response to COVID-19

• Priority is to drive open and rapid 
access to data, tools and workflows 
for the European COVID-19 
response and research

• We will achieve this via alignment of 
national infrastructures, European 
research infrastructures (e.g. EMBL-
EBI) and H2020 projects

• Long-term sustainable solutions, 
build on open standards and aligned 
with EOSC

Dutch Contribution (DTL/ ELIXIR-NL and GO FAIR):
• semantic data model based on the Case Report Form (CRF) 

model following the WHO standards.
• VODAN-in-a-box: FAIR Data Points (6 African countries have 

FDPs installed)
• Dutch UMCs connected via FDPs 

EU data infrastructure for Covid-19



Source: Chakma, Journal of Young Investigators, 16, 2009

Principle of Personalized Medicine
81

• The right drug for right patient at right dose at right time
• Molecular biomarkers as key drivers of patient selection
• = Precision medicine or Targeted medicine

81 Alain van Gool, European Biobanking Week, Vienna, 12 Sept 2016



Personalized health(care) model

Personalized
Intervention

of patients-like-me
Personal thresholds
of persons-like-me

Big 
Biomarker
Data
Molecular
Non-molecular
Environment
…

H
om
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st
as
is
A
llo
st
as
is
D
is
ea
se

Time

Disease

Health

Selfmonitoring

Adapted from Jan van der Greef, TNO

Personal profile

Personalized health
Personalized medicine

{See eg Chen … Snyder, Cell 2012, 148: 1293}

82 Alain van Gool, Innovation for Health, 18 Feb 2016



Personalised Medicine
• Based on genotyping (genomics)
• Combining Medicine (combination drugs), 

Nutrition and Lifestyle
• Big data generated by –omics 

technologies, patient data, wearables
• Increasingly based on exposome

– defined as “the measure of all exposures of 
an individual during a lifetime and how these 
relate to health”

• Deal with (data) privacy issues and GDPR



What do others say?
Prof. Peter Coveney
Physical chemist and director of the 
Centre for Computational Science at UCL

“In such a forward-looking field as this, you 
can only make advances if you know both 
material science and computer science. You 
can’t get away with being an expert in just 
one area anymore. Old-fashioned chemistry 
cooking is over.”



Wrapping up
• Bioinformatics has a history already
• A wide scope
• Science of big numbers
• Algorithms have lots of scalability problems
• Modelling as a crucial analytics tool (systems 

biology, metabolomics)
• Data stewardship is crucial

o Long term preservation of public data 
• FAIR data principles (Findable, Accessible, 

Interoperable, Reusable)
• Crucially important societal application of big 

data interoperability: Personalised/precision 
medicine
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Health-RI 4-minute movie at 

https://www.youtube.com/watch?v=FoWqSZeaOxs

https://www.youtube.com/watch?v=FoWqSZeaOxs
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Personal Health Train (PHT) 3-minute movie at 

https://www.youtube.com/watch?v=mktAtHmy-FM

https://www.youtube.com/watch?v=mktAtHmy-FM

