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Bioinformatics originated in Utrecht




; = . of - o7 pos
Rl e e ) ) Ve =
-~  ESSL S <A R

i5% Dr. Paulien Hogeweg
- |Bioinformatics group




Bioinformatics originated in Utrecht

[ )
° [ ]
o
w & : 4 |
° L 1". i ,'_. 4 — )
iy Ry b e . | \ (! - i 4)
i i S\ o & o / . !
iy * y R % < s 5 ! " d e : U 0
f \ Al " LU 4 1T Al e I vl
; N3, U [, | . =1 0 .
= NS N My | ¢
- M . ) L ' . »
o b B ¢ B : :
3.5 41 S ER 5 ._;’” % | } | L
| Y Ira ¥ BTN i : i
e b ‘;H “ -
' " | g & =
@ % § LN i ARNSETLR g | . U
e R R b > F

“... studying informatic processes in biotic
systems”

Hogeweg P (2011) The Roots of Bioinformatics in Theoretical Biology. PLoS Comput Biol 7(3):
€1002021. https://doi.org/10.1371/journal.pcbi.1002021



Anatomy, dynamics, informatics

Modern life sciences are data
sclences..

..and are becoming ever more
Inter-disciplinary



Bioinformatics

Biology
Statistics Molecular
biology

Computer
Science
Informatics




What is driving Life Sciences
Technology/high-throughput measurements

* Bio-sciences
— Genomics: HTP measurements; e.g. Sequencing
(NGS), Chip-seq, RNA-seq
— Proteomics, metabolomics
« X-ray, NMR, Mass Spectrometry

— Imaging, optical measurement techniques, single cell
measurements, single molecule tracking

— Lots of new stuff coming up...

Data generating technologies enabled by IT



It’'s a nervous field....

» Changes all the time
— New measurement techniques
— New data time and again
— New technology, formats, standards, hypes
— New insights



It’'s a nervous field....

» Changes all the time
— New measurement techniques
— New data time and again
— New technology, formats, standards, hypes
— New insights

« Compare this to studying ancient Greek
philosophy
— Not many new data
— Perhaps insights develop



Multicellular organisms:

Development of a zygote into a mature
organism: many questions remain!

Different genetic
programs

Cell division Cell division &
differentiation




What makes a biological species: how are
differences generated and what are the
consequences of these differences?

« What is causing the difference between species?
How do species arise?




Diversity in complexity and size

Enormous diversity in scope:

— Part of organism — virus

— Single cell — bacterium, unicellular organisms

— Multicellular organisms (C. elegans 1000 cells, blue whale )

Science of big numbers: about 42 trillion ("5*1013) cells
in human organism, divided over 210 different types of
tissue.

A human cell holds about 42 million proteins.

Almost all cells contain DNA and many (shorter) RNA
molecules

In addition to the genetical machinery, there is the gut
and oral microbiome having profound influences on
health



Important questions in biology and
medicine are dealing with the decoding of
the ‘information’ that resides in the
genetic material.

How can this...... ...lead to this?
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Bioinformatics in the olden days

* Close to Molecular Biology:

— (Statistical) analysis of protein and nucleotide
structure

— Protein folding problem
— Protein-protein and protein-nucleotide interaction

* Many essential methods were created early
on (1970s - ..)

— Protein sequence analysis (pairwise and multiple
alignment)

— Protein structure prediction (secondary, tertiary
structure)

— Protein interaction (docking) prediction



Bioinformatics in the olden days

 Evolution was studied and methods
created
— Phylogeny: evolutionary ancestry

— Phylogenetic reconstruction (clustering —
e.g., Neighbour Joining (NJ) method)



We were making methods..
We were analysing data..
Trying to become important

But then....



... the bioinformatics big bang



The Human Genome Project (HGP)

MIRACLE W/

OLCURS .-

“I think you should be more explicit here in
step two.”



The Human Genome Project

The first global collaborative and inter-
disciplinary life science project with
big data exchange via the internet



The Human Genome Project

The first global collaborative and inter-
disciplinary life science project with
big data exchange via the internet

... Although “collaborative”should
perhaps be taken with a grain of salt..



The Human Genome Project

A nervous race between academy (HGC)

and industry (Celera).

« At stake were patenting issues and the
prospect of formidable impediment of
progress in biomedical sciences

 The main character: Dr. Craig Venter (Celera)



Human genome project (1990 — 2003)

- ‘a milestone for humanity’
- performed using traditional sequencing techniques



Human genome project (1990 — 2003)

- ‘a milestone for humanity’
- performed using traditional sequencing techniques

Craig Venter’s thread: human genome data
might be made proprietary via patents by
Celera Genomics



The Human Genome -- 26 June 2000
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Dr. Craig Venter Francis Collins (USA) /
Celera Genomics Sir John Sulston (UK)

-- Shotgun method Human Genome Project



The Human Genome -- 26 June 2000

“Without a doubt, this is the
most important, most
wondrous map ever
produced by humankind.”

U.S. President Bill Clinton on 26 June 2000
during a press conference at the White House.



On 26 June 2000, leaders of the
public project and Celera
announce completion of a
working draft of the human
genome sequence. Collins and
Venter are seen here on
television with Ari Patrinos of the
DoE, who cut through the
animosity between the rival
projects to broker the joint
announcement at the White
House in Washington.

ey |
DECODING THE

BOOK OF LIFE

Outside, celebrations continue with
Eric Lander of the Whitehead
Institute, Baylor's Richard Gibbs,
and Waterston and Richard Wilson
from Washington University.

The press conference at the white
house, hosted by President Bill Clinton

:

i‘ On hand at a press conference that
followed the White House genome
announcement are (from I) Dr. Craig
Venter, Celera; Dr. Ari Patrinos, U.S.
Department of Energy, and Dr. Francis
Collins, director, NHGRI. DOE and NIH
are the two federal agencies involved in
the Human Genome Project.
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Human genome project - in numbers

Exons (regions of genes coding
for protein, rRNA, or tRNA) (1.5%)

—

e 23 chromosome pairs
« 20.000 genes

« 2.9 billion base pairs
(out of 3.3 billion)



Sequencing

TAGTCGAGGCTTTAGATCCGATGAGGCTTTAGAGACAG

AGTCGAG CTTTAGA CGATGAG CTTTAGA
GTCOeaG TTAGATC ATGAGGC GAGACAG
GAGGCTC ATCCGAT AGGCTTT GAGACAG
AGTCGAG TAGATCC  ATGAGGC  TAGAGAA
TAGTCGA CTTTAGA COGATGA TTAGAGA
COAGGCT AGATCCG TOAGGCT  AGAGACA
TAGTOGA GCTTTAG TCCGATG GCTCTAG
TOGACGC  GATCCGA GAGGCTT AGAGACA
TAGTCGA TTAGATC GATGAGG TTTAGAG
GTOGAGG  TCTAGAT ATGAGGC TAGAGAC
AGGCTTY ATCCGAT AGGCTTT  GAGACAG
AGTCGAG TTAGATT ATGAGGC AGAGACA
GGCTTTA  TCOGATG TTTAGAG
CGAGGCT TAGATCC TGAGGCT GAGACAG
AGTCGAG TITAGATC  ATGAGGC TTAGAGA
GAGGCTT GATCCGA  GAGGCTT GAGACAG

Reads may contain (experimental) Errors...

Reconstructing
a DNA
sequence from
many randomly
selected short
fragments
(reads)



Shotgun Method - Pros and

{ CELERA

A PE Corporation Business

Celera versus Human Genome Project

* Pros
— Human labour reduced to minimum

« Cons
— Computationally demanding — O(n?)
comparisons

— High error rate in contig construction

» Repeats as the main problem
 The human genome is very repetitious (~50%)



Next Generation Sequencing (NGS)

« Massively parallel sequencing of millions to billions of
short fragments

* Very fast

- (Sanger sequencing max 384 DNA samples in a single batch
(run) in up to 24 runs a day)

« Huge amounts of data generated in single sequencing
experiment (many TBs)

« Much reduced cost (1 human genome: HGP 3 billion $
versus NGS ~10,000 $)

« Shorter fragments (reads) than with Sanger sequencing

o Many different techniques exist but based on approx. same
principle. Differences reside mainly in chemical usage and the
way fragments are stuck to the surface



Next Generation Sequencing
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Next Generation Sequencing

d:, Developments in
J: HiseaX  biseq 4000 High Throughput Sequencing

Hiseq

Congratulations!
The first >2 Mb DNA read, achieved with
nanopore sequencing

Matt Loose, Alex Payne, Nadine Holmes, Vardhman Rakyan &
team, University of Nottingham, UK
May 2018

Lex Nederbragt (2012-2015) http://dx.doi.org/10.6084/m3.figshare.100940
SOU.I‘C@I Walter 0.00001 "gt(' = ) p// g/ = f ol

Pirovano,
BaseClear

10 100 1,000 10,000
Read length (log scale)

Lex Nederbragt - http://flxlex.flavors.me/
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NGS output

* Millions to a billion of sequenced short
fragments
(data handling not easy)

« Can sequence either DNA or RNA

sequences

— Abundance may be estimated (deep
sequencing)

» What to do next”? BIOINFORMATICS



Putting the reads together using

bioinformatics

Two main ways of stringing together the many
short reads into a complete genome sequence

— De novo assembly —
of a genome

Assembly

Contigs

Consensus

— Assembly using
alignment onto a e
reference genome

| Graph




De novo sequencing - a contig

» Reconstructing a complete genome de novo
requires testing possible overlaps between all
possible pairs of reads and then building the
whole genome together according to some

criterion: overlap
LAACTTCGCCCGATGGCTTTTA
TGGCTTTTAAACGCATT..

Y

— A known and related problem in Computer Science is
the Shortest Superstring Problem (SSP), where all
fragments are strung up to produce the shortest
overall string (i.e. genome).

 However, the shortest possible string is not an ideal criterion

because genomes have many repeating fragments (human
DNA >50% repetitious)



Repetitive elements

 Repeats can cause major problems to the
assembler:;

— Reads corresponding to two separate repeats may be
collapsed in a single contig

rpt1A Il rpt1B I

Region in between the repeats
is thrown out




Why bother with genomics?

Human DNA contains "20k genes, encoding

for proteins

— Many genes may encode multiple forms of protein
(e.g. through alternative splicing)

DNA also encodes many different types of
functional RNA molecules

The big challenge is finding out the function
of these components in the cell and how they
interact.

Cells and organisms are information
processing entities

— Understanding how they work will give us clues for
avoiding or treating diseases.



Sequence-Structure-Function

Ab initio
prediction
and folding
Sequence impossible but for
1 the smallest
structures
| B Structure
hreading
1 Function
Homology Function prediction
searching from
(BLAST) Struc\;%g%lfﬂcult

We can neither predict structure from sequence (‘folding problem’), nor predict
function from structure. However, we can do the knowledge-based activities
designated by the green arrows based on the homology principle (see earller
slides) thanks to the availability of curated and annotated databases




AlphaFold

Deep learning ‘solving’ protein folding problem

AlphaFold is an Al system developed
by DeepMind that predicts a
protein’s 3D structure from its amino
acid sequence. It regularly achieves
accuracy competitive with
experiment.

DeepMind and EMBL’s European Bioinformatics
Institute (EMBL-EBI) have partnered to create
AlphaFold DB to make these predictions freely
available to the scientific community. The database
covers the complete human proteome (including
fragments for long proteins) and the proteomes of 47
other key organisms (e.g. mouse), as well as the
majority of manually curated UniProt entries (Swiss-
Prot). In 2022 we plan to expand the database to
cover a large proportion of all catalogued proteins (the
over 100 million in UniRef90).

Q8I3H7: May protect the malaria parasite against attack by the immune system.
Mean pLDDT 85.57.



Searching for similarities

* The main question: what is the function of the
new gene?

* The “lazy” investigation without doing
experiments:

- Find a set of similar proteins
— ldentify similarities and differences

— For long proteins it is often good to identify
domains first and then compare the corresponding
(sub)sequences separately

* A domain is a unit of function
* Multi-domain proteins have a compound function



Inferring homology from
similarity

 Homology: sharing a common ancestor
— a binary property (yes/no)

« Common ancestry makes it more likely
that genes share the same function
— It's a nice tool:

When (a known gene) G is homologous to
(an unknown gene) X, we gain a lot of

CA
information on X by transferring what we / \
know about G ¥

k,..



DNA makes RNA makes Protein

From gene to function

Genome

l
—  mRNA
!

Proteome

Metabolome
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There are various

* Protein-protein interaction
 Signalling

* Metabolomic

* Other

—These networks are interconnected
and function in a multi-level way —
should function adequately

(note that they are not really there)




Heterarchically-connected network
layers in the cell




AATCGT

AATCGT

AATCGT

AAT%;GT
by

\\

T

I |
Individual sequence differences
may lead to different cellular

behaviour at the network level...



Sequences become different during

evolution

Protein multiple sequence alignment
Histone H1 (residues 120-130)
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Evolution and three-dimensional protein
structure information

) MM/\
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What do we see if we colour code the space-filling (CPK) protein model?
« E.g., red for conserved alignment positions to blue for variable

(unconserved) positions.



Network Evolution

Human Yeast

el |

I PRt R R l I "

Networks
become

\ different
during

evolution

Homo sapiens (human) and (right) Saccharomyces cerevisiae (baker’s yeast).

e Changes in controlling enzymes (boxes in red) and the
pathway itself have occurred



Modelling vulval development in C.

Caenorhabditis elegans

elegans

Imm long

1000 cells
Intensively
studied (Sydney
Brenner started
research in the

19605s)



Cell fates and the onset of the
vulva

Vulval precursor cells (VPCs) Anchor Cell (AC)
P3, P4y, P5, P6 P7, P8,

'

00“010“0

P6

P3 P4 P5 P7

P8

p p p

3° 2 B y X 3
fate fate fate fate fate



Cell fates and the onset of the

vulva
Vulval precursor cells (VPCs) Anchor Cell (AC)
No AC
P3, P4y, P5, Péy, P7, P8,
® © © © © O
l no vulva

00“010“0

P6

P3 P4 P5 P7

P8

p p p

3° 2 B y X 3
fate fate fate fate fate



Petri Net Model of C. elegans Vulval Development

hyp? AC
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Petri Net Model of C. elegans Vulval Development

hyp7

The entire network
comprises about 600
nodes (places and
transitions) and 1000

arcs.

P3.p P4.p PS.p P6.p P7.p
The multicellular model contains genes, proteins and mi-RNA, and modelled

functionalities such as protein production, interaction, downregulation, degradation
and signalling (transport) through time.



For reference
NGS and cancer: Which genes cause it
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http://www.nature.com/msb/journal/v9/n1/full/msb201261.html

The data tsunami

« Exponential growth of databases

120000 1010-]
GenBank
100000 [~ - Millions of nucleotides — EMEL
= SWISS-PROT
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ear

Straight line
implies
exponential
growth



The Economist on the data tsunami..
Welcome to the yotta world

Big Data will flood the planet

Exaponential
Quantity of global digital data, exabytes

18 e

Source: EMC/IDC Digital Universe Study, 2011

http://www.economist.com/node/21537922




BIG DATA: TWO PROBLEMS - DATA LOSS AND

DATA GROWTH

MISSING DATA ~8 months
1E+15
As research articles age, the odds of their raw data being extant \ 12 month
drop dramatically. 1E+14 ~— Assembled sequence months
111111 === Capillary trace
OO s 4 B G s S —

1980 1985 1990 1995 2000 2005

Data extant (assuming author responded)

0 : : : l Date
5 10 15 20
Ageof paper (years) « Computer speed and storage
Nature news, 19 December 2013 Capacity iS doubling evel"y 18

months and this rate is steady
(Moore’s law)

« DNA sequence data is
b doubling every 5-6 months
T over the last 3 years and looks

‘Oops, that link was the laptop of to continue for this decade
my former PhD student’

62 Faculty of Sciences



The champion of data storage?

« Storing all data of 2020 (50 zettabytes)?

» Ultra modern disk technology?

* Or a molecule that evolved over about 4.2
billion years...



The champion of data storage?

Storing all data of 2020 (50 zettabytes)?
Ultra modern disk technology?

Or a molecule that evolved over about 4.2
billion years...

DNA can store 1
yottabyte of data
on roughly 1
gram!

George Church, Harvard Univ.

1 zettabyte = 102! bytes, 1 yottabyte = 1024 bytes



The champion of data storage?

 Storing all data of 2020 (50 zett=k ]

 Ultra modern disk t;n-fo“ma’t‘\Oﬂ \S

‘B&/g .
George Church, Harvard Univ.

1 zettabyte = 102! bytes, 1 yottabyte = 1024 bytes




Information sciences are
fundamentally changing the
world

* Through (information) technology

—Political, societal (technology
application)

— Life sciences (bio-based economy)
—Health and quality of life



Where are we heading?

Finding subatomic particles (Higgs boson)
Large-scale surveillance

Predicting longer term weather, landslide,
earthquake (e.g. DeepMind)

Predicting spread of disease (Google can
already do flu)

Social trends

— Rapper Jay-Z in 2015 moved concert from
Stockholm to Gothenburg as Spotify’s big data
analysis proved a larger fan base there



Data

“Too often we forget that genius, too,
depends upon the data within its reach, that
even Archimedes could not have devised

Edison’s inventions.” Ernest Dimnet.




THE DATA PRINCIPLE

 Data should be

— Findable, Accessible, Interoperable, Reusable
(Barend Mons, LUMC & DTL)

* Publishing existing and new datasets in semantically
interoperable format that can be understood by
computer systems.

* By semantically annotating data items and metadata,
we can use computer systems to (semi) automatically
combine different data sources, resulting in richer
knowledge discovery.

* Metadata all important

69 Network Biomedicine - How valid is your pathway



FAIR DATA STEWARDSHIP

« Combination of all expertise to treat data well and
durable 1n a project and beyond:

— Experiment design and data-design;
— Re-use of existing data where possible;

— Planning of the storage, networking and
computing infrastructure;
— Data acquisition and processing;

— Data publishing in a format that allows
functional interlinking of data(sets) as well as in
a format suitable for long-term preservation.




/IR FAIRDATA Siay

« 2014: FAIR (Findable, Accessible, Interoperable, Reusable)
data principles launched at Leiden Lorentz meeting (DTL
driven)

« 2016: G20 adopt FAIR Principles

« 2017: Open European Science Cloud (EOSC) stipulates
FAIR principles

« 2017: G7 adopt FAIR principles
« 2017: ELIXIR ESFRI bases its platforms on FAIR principles

« 2017: Science funders (e.g. NWO in The Netherlands)
stipulate adherence

« 2017: GO-FAIR initiative endorsed by Dutch, German and
French Governments

« 2019: Open Science rolled out across Europe



WHAT IS FAIR DATA?

FAIR Data aims to support existing communities
in enabling valuable scientific data and
knowledge to be published and utilised 1n a

‘FAIR’ manner.

Findable- (meta)data 1s uniquely and persistently identifiable.
Should have basic machine readable descriptive metadata.

Accessible - data 1s reachable and accessible by humans and
machines using standard formats and protocols.

Interoperable - (meta)data 1s machine readable and annotated with
resolvable vocabularies/ontologies.

Reusable - (meta)data is sufficiently well-described to allow
(sem1)automated integration with other compatible data sources.

Machines should be able to understand the data!



WHAT IS FAIR DATA?

FAIR Data ai

. 1ms to support existi

in . 1sting com It
enabling valuable scientific datagand mumiies

! anad 1
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OPEN Comment: Th

SUBJECT CATEGORIES

aror® | Principles for scientific data

» Publication

management and stewardship

. Mark D. Wilkinson et al.®

Wilkinson et al,
Nature Scientific Data, 2016



15 FAIR DATA PRINCIPLES SINCE 2016

To be Findable:

F1. (meta)data are assigned a globally unique and persistent identifier

F2. data are described with rich metadata (defined by R1 below)

F3. metadata clearly and explicitly include the identifier of the data it describes

F4. (meta)data are registered or indexed in a searchable resource

To be Accessible:

Al. (meta)data are retrievable by their identifier using a standardized communications
protocol

A1.1 the protocol 1s open, free, and universally implementable

A1.2 the protocol allows for an authentication and authorization procedure, where necessary
A2. metadata are accessible, even when the data are no longer available

To be Interoperable:

I1. (meta)data use a formal, accessible, shared, and broadly applicable language for
knowledge representation.

2. (meta)data use vocabularies that follow FAIR principles

I3. (meta)data include qualified references to other (meta)data

To be Reusable:

R1. meta(data) are richly described with a plurality of accurate and relevant attributes
R1.1. (meta)data are released with a clear and accessible data usage license

R1.2. (meta)data are associated with detailed provenance

R1.3. (meta)data meet domain-relevant community standards



FAIR DATA RESOURCE

Datasets expressed using one of the prescribed standards of the FAIR Data
Protocol.

The original dataset 1s transformed into a FAIR format and proper
metadata and license are added to produce a FAIR Data Resource. Original
and the FAIR version can co-exist, each one fulfilling its own purpose.

FAIR Data Resource

FAIR Conversion

Metadata License
Original dataset % ﬂ



High-Performance
Analysis

FAIR (meta)data
(RDF,XML etc.)

Processed data
(primary storage format)

Raw data

(many formats)

FAIR download
(in local format)

Provenance

Ay




DISTRIBUTED ARCHITECTURE
OF FAIR DATA POINTS

Organization X Rare Diseases
= DataFAlRport / F/II?
\"=" : B LN

A).Open PHACTS
DataFAlIRport

eli)ir
DataFAIRport

VLPB/WUR
Data FAIRport /

Organization Y

1 = ;
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SEMANTIC INTEROPERABILITY THROUGH RDF

RESOURCE DESCRIPTION FRAMEWORK

Unit of information:
the data triple

, <Protein B>
Predicate ’

<Protein A> <interacts_with> <Protein B>

Linked data cloud

<participates_in>
<Pathway A>

<influences>

_<Disease A>

g
Putcaters
150 qerseomes content

Utk scences

Ao Sepenter 200t QOB

Data interoperability
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TRAFFICKING THE DATA HIGHWAY: THE POWER OF
INTEROPERABILITY
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EU data infrastructure for Covid-19
ELIXIR, EMBL-EBI and EOSC-Life response to COVID-19

Interconnected COVID-19 Data Spaces

Supporting long-term solutions for
PANDEMIC PREPAREDNESS

Priority is to drive open and rapid
access to data, tools and workflows
for the European COVID-19
response and research

We will achieve this via alignment of
national infrastructures, European
research infrastructures (e.g. EMBL-
EBI) and H2020 projects

Long-term sustainable solutions,

build on open standards and aligned
with EOSC

Dutch Contribution (DTL/ ELIXIR-NL and GO FAIR):

« semantic data model based on the Case Report Form (CRF)
model following the WHO standards.

 VODANH-in-a-box: FAIR Data Points (6 African countries have
FDPs installed)

e Dutch UMCs connected via FDPs




Principle of Personalized Medicine

L

Drug toxic but
NOT beneficial

’ " Patient group

Drug toxic but
beneficial

same prescnptlon

Drug NOT toxic and

NOT beneficial Orug NOT toxic

and beneficial

Source: Chakma, Journal of Young Investigators, 16, 2009
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* The right drug for right patient at right dose at right time
* Molecular biomarkers as key drivers of patient selection -
* = Precision medicine or Targeted medicine e

81 Alain van Gool, European Biobanking Week, Vienna, 12 Sept 2016 RadbOUdumC _mmﬂ}f‘m— DTL &2 eatrls



Personalized health(care) model .P:Viedicne
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Personalized
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Selfmonitoring

Personalized health

Personalized medicifiel
Adapted from Jan van der Greef, TNO

{See eg Chen ... Snyder, Cell 2012, 148: 1293}
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Personalised Medicine

Based on genotyping (genomics)

Combining Medicine (combination drugs),
Nutrition and Lifestyle

Big data generated by —omics
technologies, patient data, wearables
Increasingly based on exposome

— defined as “the measure of all exposures of
an individual during a lifetime and how these
relate to health”

Deal with (data) privacy issues and GDPR



What do others say?

Prof. Peter Coveney
Physical chemist and director of the A2

Centre for Computational Science at UCL | & ‘ ;
P

-l

i v

Y »

<« X4
- \‘ ‘\

“In such a forward-looking field as this, you
can only make advances if you know both
material science and computer science. You
can’t get away with being an expert in just

one area anymore. Old-fashioned chemistry
cooking is over.”



Wrapping up

Bioinformatics has a history already
A wide scope

Science of big numbers
Algorithms have lots of scalability problems
Modelling as a crucial analytics tool (systems
biology, metabolomics)

Data stewardship is crucial

o Long term preservation of public data
FAIR data principles (Findable, Accessible,
Interoperable, Reusable)

Crucially important societal application of big
data interoperability: Personalised/precision
medicine
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https://www.youtube.com/watch?v=FoWqSZeaOxs
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3-minute Movie at

Personal Health Train (PHT)

Radboudumc —-TNO It DTL > eatrls


https://www.youtube.com/watch?v=mktAtHmy-FM

