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symmetric tournament pair
submodularity on binary trees
submodularity on distributive lattices
submodularity on dimaonds

skew bisubmodularity

bisubmodularity on 3-element domains
binary functions on unbounded domains
binary weighted functions
{0,1}-valued functions on |D| = 2
{0,1}-valued functions on |D| =3
{0,1}-valued functions on |D| = 4
{0,1}-valued conservative functions
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functions on |D| =3

weighted colourings

binary BLP

conservative functions
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min E d(xi, ;)
x1,...,tn€{0,1}
s=0,t=1 {4J}€E(G)

¢(0,0) + ¢(1,1) < ¢(0,1) + &(1,0)

submodularity

dichotomy!

Thm: CSPs with Q-valued fns in PTIME if ..., NP-complete otherwise
(all tractable cases via Basic LP) [Thapper, Z. JACM’1 6]
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Constraint Satisfaction Problems

IN: set of variables, set of labels, set of constraints

OUT: assignment that satisfies and optimises constraints

- CSP = (V,D,C)

» CSP = homomorphism problem

»+ CSP = conjunctive query evaluation

* CSP = model checking of pp-fragment of FO

balance between generality and structure
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functions on non- [Kolmogorov, Thapper,
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Vertex Cover is not solved by Basic LP!

Submodular CSPs solved by Basic LP!
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min Z ]P)SND({’U})[U S S]
veV
s.t. D(U) is a distribution on P(U) YU C V,|U| < k

PSND({%U})[U ZS,vé& S] =0 V(u,v)€eE
Ps~pw =Ps~p) VU' CUCV,|UI<k

Thm: Sum-of-Squares SDP solves CSPs with (Qu{c0})-valued functions iff ...

(Sherali-Adams(3) or not even Sum-of-Squares(-;5;))  [Thapper, ZACMToCT'18]

Vertex Cover is not solved by any poly-size SDP relaxation!
[Lee, Raghavendra, Steurer STOC’| 5]



Exact Solvability

Power of Basic LP [Kolmogorov, Thapper, Z. SICOMP’[ 5]
Power of Sherali-Adams LP [Thapper, Z. SICOMP’ 7]

Power of Sum-of-Squares SDP [Thapper, Z. ACM ToCT’ | 8]



Exact Solvability

Power of Basic LP [Kolmogorov, Thapper, Z. SICOMP’[ 5]
Power of Sherali-Adams LP [Thapper, Z. SICOMP’ | 7]
Power of Sum-of-Squares SDP [Thapper, Z. ACM ToCT’ | 8]

Fixed RHS: CSP(-,B)



Exact Solvability

Power of Basic LP [Kolmogorov, Thapper, Z. SICOMP’[ 5]

Power of Sherali-Adams LP Thapper, Z. SICOMP’| 7]

all functions

Power of Sum-of-Squares SDP [Thapper, Z. ACM ToCT’ | 8]

Fixed RHS: CSP(-,B)



Exact Solvability

Power of Basic LP [Kolmogorov, Thapper, Z. SICOMP’[ 5]

Power of Sherali-Adams LP Thapper, Z. SICOMP’| 7]

all functions

Power of Sum-of-Squares SDP [Thapper, Z. ACM ToCT’ | 8]

Fixed RHS: CSP(-,B)
Fixed LHS: CSP(A,-)
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CSP(+4-) not in PTIME otherwise [Grohe JACM07]
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W[ Il]-hard
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Theorem [Carbonnel, Romero, Z. SICOMP’'21+]

Assume FPT £ W][1]|. Let A be a recursively enumerable class
of (Q U {oo})-valued structures of bounded arity. TFAE:

1. CSP(A,—-) € PTIME (JA| + |B|)°W)
2. p-CSP(A, —) € FPT f(|A]) - |B|OW)
3. A is bounded treewidth modulo valued equivalence

tw(vcore(#))< ®

PTIME

38



Sherali-Adams for CSP(A4,-)

T heorem [Carbonnel, Romero, Z. SICOMP 21+ ]

Let A be a (Q U {oo0})-valued o-structure.
Let kK > max-arity(o).
Let A’ be a valued core of A.

kth level of Sherali-Adams is exact
opti(A, B) = opt(A, B) for every valued o- structure B

0

1. tw(A') < k—1



Sherali-Adams for CSP(A4,-)

Theorem [Carbonnel, Romero, Z. SICOMP'21+]

Let A be a (QU {oo})-valued o-structure.
Let K > 1.

Let A’ be a valued core of A.

kth level of Sherali-Adams is exact
opti(A, B) = opt(A, B) for every valued o- structure B

0

1. tws(A) < k-1
2. overlap of A is < k



Exact Solvability

Power of Basic LP [Kolmogorov, Thapper, Z. SICOMP’[ 5]
Power of Sherali-Adams LP [Thapper, Z. SICOMP’ | 7]
Power of Sum-of-Squares SDP [Thapper, Z. ACM ToCT’ | 8]

Fixed RHS: CSP(-,B) K
Fixed LHS: CSP(A,-) |

Power of Sherali-Adams LP [Carbonnel, Migero, Z. SICOMP’2 | +]
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xcluded-minor PTAS [Grohe Combinatorica’03,
exciuae Demaine et al. FOCS’05]

[Arora et al. STOC’95,
dense PTAS L ot
fr-tw-fragility hyperfiniteness regularity partitions

How do you-unify sparse ¢ 1d dense grac it classes?

Thm: PTAS for Max-CSPs that are treewidth-pliable.  [Romero,Wrochna, Z. SODA’21]

6: Ve> 03k e NVG € €3G with tw(G) < kA d,,(G,G) < ¢
d,, (G, G') = inf, Max-Cut(G) = (1 £ £)Max-Cut(G")
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“l can’t find an efficient algorithm, but neither can all these famous people.”

Satisfy a relaxed version of the constraints!
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Approximate Colouring

(k,c)-colour

find a c-colouring of a k-colourable graph

Conjecture: for any constant 3=k=c, (k,c)-colour is NP-hard.
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Approximate Colouring

Known hardness:

(k,k) fork >3 [Karp CCC’72]
(k,2k —5) for k > 6 [Garey & Johnson JACM’76]
(k,k+ 2 [%J — 1) for k > 3 [Khanna et al. Combinatorica’00]
(k,2k —2)for k>3 [Brakensiek & Guruswami CCC’l 6]
(k,2k—1) for k>3 [Bulin et al. STOC’19]

k =5 ’
Thm: (£, <Lk/2J) — 1) for k > 4. [Wrochna, Z. SODA’20]

Finding a c-colouring a 3-colourable graph believed to be hard!
(but only known for 3 < ¢ <))
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Approximate Graph Homomorphism

4-¢ Finding a 3-colouring of a 2-colourable graph easy!

Thm: Finding a 3-colouring of (2+¢)-colourable graph is NP-hard.
[Krokhin, Oprsal, Wrochna, Z.2 1 +]

every non-bipartite topology
3-colourable H matters!

Thank you!



