Power of Algorithms in Discrete Optimisation

Stanislav Živný (Oxford) 25th November 2021

What captures efficient computation?

What captures efficient computation?

What are the limits of efficient algorithms?

convex relaxations

(s,t)-Min-Cut

(s,t)-Min-Cut

 $\min_{\substack{x_1,\dots,x_n\in\{0,1\}\\s=0,t=1}}\sum_{\{i,j\}\in E(G)}\phi(x_i,x_j)$

(s,t)-Min-Cut

x	y	$\phi(x,y)$
0	0	0
0	1	1
1	0	1
1	1	0

 $\min_{\substack{x_1,\dots,x_n\in\{0,1\}\\s=0,t=1}}\sum_{\{i,j\}\in E(G)}\phi(x_i,x_j)$

(s,t)-Min-Cut

$\left[\right]$	x	y	$\phi(x,y)$
	0	0	0
	0	1	1
	1	0	1
	1	1	0

 $\min_{\substack{x_1,\dots,x_n \in \{0,1\}\\s=0,t=1}} \sum_{\{i,j\} \in E(G)} \phi(x_i,x_j)$ $\phi(0,0) + \phi(1,1) \le \phi(0,1) + \phi(1,0)$

(s,t)-Min-Cut

y	$\phi(x,y)$
0	0
1	1
0	1
1	0
	1

$$\min_{\substack{x_1,\dots,x_n \in \{0,1\}\\s=0,t=1}} \sum_{\substack{\{i,j\} \in E(G)}} \phi(x_i, x_j)$$

$$\phi(0,0) + \phi(1,1) \le \phi(0,1) + \phi(1,0)$$

submodularity

(s,t)-Min-Cut

x	y	$\phi(x,y)$
0	0	0
0	1	1
1	0	1
1	1	0

symmetric tournament pair submodularity on binary trees submodularity on distributive lattices submodularity on dimaonds skew bisubmodularity bisubmodularity on 3-element domains binary functions on unbounded domains binary weighted functions $\{0,1\}$ -valued functions on |D| = 2 $\{0,1\}$ -valued functions on |D| = 3 $\{0,1\}$ -valued functions on |D| = 4{0,1}-valued conservative functions functions on |D| = 2functions on |D| = 3weighted colourings binary BLP conservative functions min 0-extension problems

[Cohen et al. TCS'08] [Kolmogorov MFCS'11] [Iwata et al. JACM'01] [Kuivinen DO'11] [Huber et al. SODA'13/SICOMP'14] [Fujishige & Iwata SIDMA'05] [Cohen et al. JAIR'04] [Cohen et al. DAM'05] [Creignou JCSS'95] [Jonsson et al. SICOMP'06] [Jonsson et al. CP'11] [Deineko et al. JACM'08] [Cohen et al. AIJ'06] [Huber et al. SODA'13] [Jonsson & Krokhin JCSS'07] [Werner PAMI'07, PAMI'10] [Kolmogorov & Ž. JACM'13] [Hirai SODA'13]

 $\min_{\substack{x_1,\dots,x_n\in\{0,1\}\\s=0,t=1}} \sum_{\substack{\{i,j\}\in E(G)}} \phi(x_i,x_j)$ $\phi(0,0) + \phi(1,1) \le \phi(0,1) + \phi(1,0)$

submodularity

(s,t)-Min-Cut

y	$\phi(x,y)$
0	0
1	1
0	1
1	0
	1

$$\min_{\substack{x_1,\dots,x_n \in \{0,1\}\\s=0,t=1}} \sum_{\substack{\{i,j\} \in E(G)}} \phi(x_i, x_j)$$

$$\phi(0,0) + \phi(1,1) \le \phi(0,1) + \phi(1,0)$$

submodularity

(s,t)-Min-Cut

x	y	$\phi(x,y)$
0	0	0
0	1	1
1	0	1
1	1	0

$$\min_{\substack{x_1,\dots,x_n \in \{0,1\}\\s=0,t=1}} \sum_{\substack{\{i,j\} \in E(G)}} \phi(x_i, x_j)$$

$$\phi(0,0) + \phi(1,1) \le \phi(0,1) + \phi(1,0)$$

submodularity

Thm: CSPs with Q-valued fns in PTIME if ..., NP-complete otherwise

[Thapper, **Ž**. JACM' I 6]

(s,t)-Min-Cut

x	y	$\phi(x,y)$
0	0	0
0	1	1
1	0	1
1	1	0

 $\min_{\substack{x_1,\dots,x_n \in \{0,1\}\\s=0,t=1}} \sum_{\substack{\{i,j\} \in E(G)}} \phi(x_i,x_j)$ $\phi(0,0) + \phi(1,1) \le \phi(0,1) + \phi(1,0)$

submodularity

dichotomy!

Thm: CSPs with Q-valued fns in PTIME if ..., NP-complete otherwise

[Thapper, **Ž**. JACM'16]

(s,t)-Min-Cut

x	y	$\phi(x,y)$
0	0	0
0	1	1
1	0	1
1	1	0

[[]Thapper, Ž. JACM'16]

(s,t)-Min-Cut

y	$\phi(x,y)$
0	0
1	1
0	1
1	0
	y 0 1 0 1

Convex Relaxations

Convex Relaxations

opt'

Convex Relaxations

Linear (LP) and Semidefinite (SDP) Programming

IN: set of variables, set of labels, set of constraints

IN: set of variables, set of labels, set of constraints

IN: set of variables, set of labels, set of constraints

OUT: assignment that satisfies and optimises constraints

3-Colour

IN: set of variables, set of labels, set of constraints

OUT: assignment that satisfies and optimises constraints

3-Colour

Linear Equations over Z7

- $x_1 + x_2 + x_3 = 1$
- $x_2 x_4 + x_5 = 0$
- $x_1 x_3 x_4 = 2$

IN: set of variables, set of labels, set of constraints

IN: set of variables, set of labels, set of constraints

OUT: assignment that satisfies and optimises constraints

(s,t)-Min-Cut

- **IN:** set of variables, set of labels, set of constraints
- **OUT:** assignment that satisfies and optimises constraints

(s,t)-Min-Cut

Vertex Cover

IN: set of variables, set of labels, set of constraints

- CSP = (V, D, C)
- CSP = homomorphism problem
- CSP = conjunctive query evaluation
- CSP = model checking of pp-fragment of FO

IN: set of variables, set of labels, set of constraints

- CSP = (V,D,C)
- CSP = homomorphism problem
- CSP = conjunctive query evaluation
- CSP = model checking of pp-fragment of FO

IN: set of variables, set of labels, set of constraints

OUT: assignment that satisfies and optimises constraints

Vertex Cover

 $V = \{x_1, \ldots, x_n\}, D = \{0, 1\}$

$$I(x_1,\ldots,x_n) = \sum_{\{i,j\}\in E(G)} \psi(x_i,x_j) + \sum_{i\in V(G)} \tau(x_i)$$

IN: set of variables, set of labels, set of constraints

OUT: assignment that satisfies and optimises constraints

Vertex Cover

 $V = \{x_1, \ldots, x_n\}, D = \{0, 1\}$

$$I(x_1, \dots, x_n) = \sum_{\substack{\{i,j\} \in E(G)}} \psi(x_i, x_j) + \sum_{\substack{i \in V(G)}} \tau(x_i)$$

$$\frac{x \ y \ \psi(x, y)}{1 \ 1 \ 0 \ 0}$$

$$\frac{x \ y \ \psi(x, y)}{1 \ 0 \ 0}$$

IN: set of variables, set of labels, set of constraints

- CSP = (V, D, C)
- CSP = homomorphism problem
- CSP = conjunctive query evaluation
- CSP = model checking of pp-fragment of FO

IN: set of variables, set of labels, set of constraints

OUT: assignment that satisfies and optimises constraints

3-Colour

IN: set of variables, set of labels, set of constraints

OUT: assignment that satisfies and optimises constraints

IN: set of variables, set of labels, set of constraints

OUT: assignment that satisfies and optimises constraints

IN: set of variables, set of labels, set of constraints

OUT: assignment that satisfies and optimises constraints

- CSP = (V, D, C)
- CSP = homomorphism problem
- CSP = conjunctive query evaluation
- CSP = model checking of pp-fragment of FO

IN: set of variables, set of labels, set of constraints

OUT: assignment that satisfies and optimises constraints

- CSP = (V, D, C)
- CSP = homomorphism problem
- CSP = conjunctive query evaluation
- CSP = model checking of pp-fragment of FO

balance between generality and structure

$$\min \sum_{v \in V} x_v$$
s.t. $x_u + x_v \ge 1 \quad \forall (u, v) \in E$
 $x_v \in \{0, 1\} \quad \forall v \in V$

$$\min \sum_{v \in V} x_v$$
s.t. $x_u + x_v \ge 1 \quad \forall (u, v) \in E$
 $0 \le x_v \le 1 \quad \forall v \in V$

Thm: Basic LP solves CSPs with $(\mathbb{Q} \cup \{\infty\})$ -valued functions iff ...

[Kolmogorov, Thapper, **Ž**. SICOMP' I 5]

Thm: Basic LP solves CSPs with $(\mathbb{Q} \cup \{\infty\})$ -valued functions iff ...

[Kolmogorov, Thapper, **Ž**. SICOMP' I 5]

[Kolmogorov, Thapper, **Ž**. SICOMP' I 5]

[Kolmogorov, Thapper, **Ž**. SICOMP' I 5]

Vertex Cover is not solved by Basic LP!

$$\min \sum_{v \in V} x_v$$
s.t. $x_u + x_v \ge 1 \quad \forall (u, v) \in E$
 $0 \le x_v \le 1 \quad \forall v \in V$

$$\min \sum_{v \in V} x_v$$
s.t.
$$x_u + x_v \ge 1 \quad \forall (u, v) \in E$$

$$0 \le x_v \le 1 \quad \forall v \in V$$

$$\min \sum_{v \in V} x_v$$
s.t. $x_u + x_v \ge 1 \quad \forall (u, v) \in E$
 $0 \le x_v \le 1 \quad \forall v \in V$

$$\min \sum_{v \in V} x_v$$
s.t. $x_u + x_v \ge 1 \quad \forall (u, v) \in E$
 $0 \le x_v \le 1 \quad \forall v \in V$

$$\min \sum_{v \in V} x_v \\ \text{s.t.} \quad x_u + x_v \ge 1 \quad \forall (u, v) \in E \\ 0 \le x_v \le 1 \quad \forall v \in V$$

Thm: Sherali-Adams(k) LP solves CSPs with $(\mathbb{Q} \cup \{\infty\})$ -valued functions iff ... [Thapper, $\check{\mathbf{Z}}$. SICOMP' 17]

Thm: Sherali-Adams(k) LP solves CSPs with $(\mathbb{Q} \cup \{\infty\})$ -valued functions iff ... (iff Sherali-Adams(3) solves) [Thapper, $\check{\mathbf{z}}$. SICOMP'17]

Thm: Sherali-Adams(k) LP solves CSPs with $(\mathbb{Q} \cup \{\infty\})$ -valued functions iff ... (iff Sherali-Adams(3) solves) [Thapper, $\check{\mathbf{Z}}$. SICOMP'17]

Vertex Cover is not solved by Sherali-Adams(k) LP!

 $\mathcal{D} \in \mathbb{R} \qquad \longrightarrow \qquad \mathcal{D} \in \mathbb{R}^d$

 $\mathcal{D} \in \mathbb{R} \qquad \longrightarrow \qquad \mathcal{D} \in \mathbb{R}^d$

Thm: Sum-of-Squares SDP solves CSPs with $(\mathbb{Q} \cup \{\infty\})$ -valued functions iff ...

[Thapper, **Ž**.ACM ToCT'18]

Thm: Sum-of-Squares SDP solves CSPs with $(\mathbb{Q} \cup \{\infty\})$ -valued functions iff ... (Sherali-Adams(3) or not even Sum-of-Squares $(\frac{n}{1024})$) [Thapper, \check{Z} . ACM ToCT' 18]

Thm: Sum-of-Squares SDP solves CSPs with $(\mathbb{Q} \cup \{\infty\})$ -valued functions iff ... (Sherali-Adams(3) or not even Sum-of-Squares $(\frac{n}{1024})$) [Thapper, \check{Z} . ACM ToCT' 18]

Vertex Cover is not solved by any poly-size SDP relaxation!

[Lee, Raghavendra, Steurer STOC'15]

Exact Solvability

Power of Basic LP

Power of Sherali-Adams LP

Power of Sum-of-Squares SDP

[Kolmogorov, Thapper, **Ž**. SICOMP' I 5]

[Thapper, **Ž**. SICOMP' I 7]

[Thapper, $\mathbf{\check{Z}}$. ACM ToCT' 18]

Exact Solvability

Power of Basic LP [Kolmogorov, Thapper, Ž. SICOMP' 15]

Power of Sherali-Adams LP

[Thapper, **Ž**. SICOMP' I 7]

Power of Sum-of-Squares SDP

[Thapper, Ž. ACM ToCT' 18]

Fixed RHS: CSP(-,B)

Exact Solvability

Exact Solvability

 $CSP(\mathcal{A}, -)$

?

 $CSP(\mathcal{A}, -)$

k-Clique = CSP(
$$\mathcal{A}$$
,-) for $\mathcal{A} = \{K_k\}_{k \ge 1}$

 $CSP(\mathcal{A}, -)$

 $CSP(\mathcal{A}, -)$

 $CSP(\mathcal{A},-)$ in PTIME if $tw(\mathcal{A}) < \infty$

[Freuder JACM'82, AAAI'90]

 $CSP(\mathcal{A}, -)$

 $CSP(\mathcal{A}, -)$

CSP(A,-) in PTIME if $tw(core(A)) < \infty$

[Dalmau, Kolaitis, Vardi CP'02]

 $CSP(\mathcal{A}, -)$

 $CSP(\mathcal{A},-)$ in PTIME if $tw(core(\mathcal{A})) < \infty$ [Dalmau, $CSP(\mathcal{A},-)$ **not** in PTIME otherwise

[Dalmau, Kolaitis, Vardi CP'02]

[Grohe JACM'07]

$CSP(\mathcal{A}, -)$ with $(\mathbb{Q} \cup \{\infty\})$ -valued fns

$CSP(\mathcal{A},-)$ with $(\mathbb{Q} \cup \{\infty\})$ -valued fns

$CSP(\mathcal{A},-)$ with $(\mathbb{Q} \cup \{\infty\})$ -valued fns

 $CSP(\mathcal{A}, -)$

 $CSP(\mathcal{A}, -)$

 $CSP(\mathcal{A},-)$ in PTIME but $tw(\mathcal{A}) = \infty$

 $CSP(\mathcal{A}, -)$

?

 $CSP(\mathcal{A}, -)$

CSP(A,-) not in PTIME but $tw(pos(A)) < \infty$

$CSP(\mathcal{A},-)$ with $(\mathbb{Q} \cup \{\infty\})$ -valued fns

$CSP(\mathcal{A},-)$ with $(\mathbb{Q} \cup \{\infty\})$ -valued fns

Theorem [Carbonnel, Romero, Ž. SICOMP'21+]

Assume $FPT \neq W[1]$. Let \mathcal{A} be a recursively enumerable class of $(\mathbb{Q} \cup \{\infty\})$ -valued structures of bounded arity. TFAE: 1. $CSP(\mathcal{A}, -) \in PTIME$ 2. p- $CSP(\mathcal{A}, -) \in FPT$ 3. $f(|A|) \cdot |B|^{O(1)}$ 3. $f(|A|) \cdot |B|^{O(1)}$

3. A is bounded treewidth modulo valued equivalence

Sherali-Adams for CSP(4,-)

Theorem [Carbonnel, Romero, Ž. SICOMP'21+]

Let A be a $(\mathbb{Q} \cup \{\infty\})$ -valued σ -structure. Let $k \ge \max$ -arity (σ) . Let A' be a valued core of A.

kth level of Sherali-Adams is exact $opt_k(A, B) = opt(A, B)$ for every valued σ - structure B 1. $tw(A') \le k - 1$

Sherali-Adams for CSP(4,-)

Theorem [Carbonnel, Romero, Ž. SICOMP'21+]

Let A be a ($\mathbb{Q} \cup \{\infty\}$)-valued σ -structure. Let $k \geq 1$. Let A' be a valued core of A.

kth level of Sherali-Adams is exact $opt_k(A, B) = opt(A, B)$ for every valued σ - structure B 1. $tw_{ms}(A') \le k - 1$ 2. overlap of A' is $\le k$

Exact Solvability

Power of Basic LP [Kolmogorov, Thapper, Ž. SICOMP' 15]

Power of Sherali-Adams LP

[Thapper, **Ž**. SICOMP' I 7]

Power of Sum-of-Squares SDP

[Thapper, Ž. ACM ToCT' 18]

Fixed RHS: CSP(-,B)

Fixed LHS: CSP(A,-)

Power of Sherali-Adams LP

[Carbonnel, Migero, **Ž**. SICOMP'2 I +]

COMPUTERS AND INTRACTABILITY A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

"I can't find an efficient algorithm, but neither can all these famous people."

COMPUTERS AND INTRACTABILITY A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

"I can't find an efficient algorithm, but neither can all these famous people."

Satisfy only a fraction of the constraints!

planar PTIME

[Hadlock SICOMP'75]

planar PTIME

excluded-minor PTAS

[Hadlock SICOMP'75]

[Grohe Combinatorica'03, Demaine et al. FOCS'05]

planar PTIME

excluded-minor PTAS

dense PTAS

[Hadlock SICOMP'75]

[Grohe Combinatorica'03, Demaine et al. FOCS'05]

[Arora et al. STOC'95, Frieze & Kannan FOCS'96]

planar PTIME

excluded-minor PTAS

dense PTAS

[Hadlock SICOMP'75]

[Grohe Combinatorica'03, Demaine et al. FOCS'05]

[Arora et al. STOC'95, Frieze & Kannan FOCS'96]

How do you unify sparse and dense graph classes?

planar PTIME

excluded-minor PTAS

dense PTAS

[Hadlock SICOMP'75]

[Grohe Combinatorica'03, Demaine et al. FOCS'05]

[Arora et al. STOC'95, Frieze & Kannan FOCS'96]

How do you unify sparse and dense graph classes?

Thm: PTAS for Max-CSPs that are treewidth-pliable. [Romero, Wrochna, Ž. SODA'21]

 $\mathscr{C}: \ \forall \varepsilon > 0 \ \exists k \in \mathbb{N} \ \forall G \in \mathscr{C} \ \exists G' \text{ with } \mathsf{tw}(G') \le k \land d_{opt}(G,G') \le \varepsilon$

Thm: PTAS for Max-CSPs that are treewidth-pliable. [Romero, Wrochna, Ž. SODA'21]

$$\begin{split} & \mathcal{C}: \ \forall \varepsilon > 0 \ \exists k \in \mathbb{N} \ \forall G \in \mathscr{C} \ \exists G' \text{ with } \mathsf{tw}(G') \leq k \land d_{opt}(G,G') \leq \varepsilon \\ & d_{opt}(G,G') = \inf_{\varepsilon} \mathsf{Max-Cut}(G) = (1 \pm \varepsilon) \mathsf{Max-Cut}(G') \end{split}$$

COMPUTERS AND INTRACTABILITY A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

"I can't find an efficient algorithm, but neither can all these famous people."

COMPUTERS AND INTRACTABILITY A Guide to the Theory of NP-Completeness

Michael R. Garey / David S. Johnson

"I can't find an efficient algorithm, but neither can all these famous people."

Satisfy a relaxed version of the constraints!

(k,c)-colour

find a c-colouring of a k-colourable graph

(k,c)-colour

find a c-colouring of a k-colourable graph

Conjecture: for any constant $3 \le k \le c$, (k,c)-colour is NP-hard.

Known hardness:

Known hardness:

(k, k) for $k \ge 3$

[Karp CCC'72]

Known hardness:

(k,k) for $k \ge 3$ [Karp CCC'72](k,2k-5) for $k \ge 6$ [Garey & Johnson JACM'76] $(k,k+2\lfloor \frac{k}{3} \rfloor - 1)$ for $k \ge 3$ [Khanna et al. Combinatorica'00](k,2k-2) for $k \ge 3$ [Brakensiek & Guruswami CCC'16]

Known hardness:

(k, k) for $k \ge 3$ [Karp CCC'72](k, 2k - 5) for $k \ge 6$ [Garey & Johnson JACM'76] $(k, k + 2\lfloor \frac{k}{3} \rfloor - 1)$ for $k \ge 3$ [Khanna et al. Combinatorica'00](k, 2k - 2) for $k \ge 3$ [Brakensiek & Guruswami CCC'16](k, 2k - 1) for $k \ge 3$ [Bulín et al. STOC'19]

Known hardness:

(k,k) for $k \ge 3$ [Karp CCC'72](k,2k-5) for $k \ge 6$ [Garey & Johnson JACM'76] $(k,k+2\lfloor \frac{k}{3} \rfloor -1)$ for $k \ge 3$ [Khanna et al. Combinatorica'00](k,2k-2) for $k \ge 3$ [Brakensiek & Guruswami CCC'16](k,2k-1) for $k \ge 3$ [Bulín et al. STOC'19]

Thm:
$$(k, \binom{k}{\lfloor k/2 \rfloor} - 1)$$
 for $k \ge 4$. [Wrochna, $\check{\mathbf{Z}}$. SODA'20]

Known hardness:

(k, k) for $k \ge 3$ [Karp CCC'72](k, 2k - 5) for $k \ge 6$ [Garey & Johnson JACM'76] $(k, k + 2\lfloor \frac{k}{3} \rfloor - 1)$ for $k \ge 3$ [Khanna et al. Combinatorica'00](k, 2k - 2) for $k \ge 3$ [Brakensiek & Guruswami CCC'16](k, 2k - 1) for $k \ge 3$ [Bulín et al. STOC'19]

Thm:
$$(k, \binom{k}{\lfloor k/2 \rfloor} - 1)$$
 for $k \ge 4$. [Wrochna, $\check{\mathbf{Z}}$. SODA'20]

Finding a c-colouring a 3-colourable graph believed to be hard! (but only known for $3 \le c \le 5$)

Finding a 3-colouring of a 2-colourable graph easy!

Finding a 3-colouring of a 2-colourable graph easy!

Thm: Finding a 3-colouring of $(2+\varepsilon)$ -colourable graph is NP-hard.

Finding a 3-colouring of a 2-colourable graph easy!

Thm: Finding a 3-colouring of $(2+\varepsilon)$ -colourable graph is NP-hard.

Finding a 3-colouring of a 2-colourable graph easy!

Thm: Finding a 3-colouring of $(2+\varepsilon)$ -colourable graph is NP-hard.

Finding a 3-colouring of a 2-colourable graph easy!

4-*E*

Thm: Finding a 3-colouring of $(2+\varepsilon)$ -colourable graph is NP-hard.

Finding a 3-colouring of a 2-colourable graph easy!

4-*E*

Thm: Finding a 3-colouring of $(2+\varepsilon)$ -colourable graph is NP-hard.

Finding a 3-colouring of a 2-colourable graph easy!

4-*E*

Thm: Finding a 3-colouring of $(2+\varepsilon)$ -colourable graph is NP-hard.

[Krokhin, Opršal, Wrochna, Ž. '2 I +]

Thank you!