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(s,t)-Min-Cut

submodularity

Thm:  CSPs with ℚ-valued fns in PTIME if …, NP-complete otherwise
 [Thapper, Ž. JACM’16](all tractable cases via Basic LP)

dichotomy!
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Constraint Satisfaction Problems

IN:       set of variables, set of labels, set of constraints

OUT:   assignment that satisfies and optimises constraints

• CSP = (V,D,C)
• CSP = homomorphism problem
• CSP = conjunctive query evaluation
• CSP = model checking of pp-fragment of FO

balance between generality and structure
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[Kolmogorov, Thapper, Ž. SICOMP’15]

Thm:  Basic LP solves CSPs with (ℚ⋃{∞})-valued functions iff …

Vertex Cover is not solved by Basic LP!

Submodular CSPs solved by Basic LP!

functions on non-
distributive lattices
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 [Thapper, Ž. ACM ToCT’18](Sherali-Adams(3) or not even Sum-of-Squares(     ))
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Vertex Cover

Thm:  Sum-of-Squares SDP solves CSPs with (ℚ⋃{∞})-valued functions iff …

 [Thapper, Ž. ACM ToCT’18]

Vertex Cover is not solved by any poly-size SDP relaxation!

(Sherali-Adams(3) or not even Sum-of-Squares(     ))

∀U ⊆ V(G ), |U | ≤ k

∀(u, v) ∈ E(G )

n
1024

[Lee, Raghavendra, Steurer STOC’15]
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Power of Sherali-Adams LP                   [Thapper, Ž. SICOMP’17]
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CSP(A,-) not in PTIME otherwise [Grohe JACM’07]
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CSP(A,-) with (ℚ⋃{∞})-valued fns 

38

PTIME

W[1]-hard

tw(A)< ∞

tw(core(pos(A)))< ∞

tw(vcore(A))< ∞
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Exact Solvability

Power of Basic LP                    [Kolmogorov, Thapper, Ž. SICOMP’15]

Power of Sherali-Adams LP                   [Thapper, Ž. SICOMP’17]

Power of Sum-of-Squares SDP            [Thapper, Ž.  ACM ToCT’18]

Fixed RHS: CSP(-,B)

Fixed LHS: CSP(A,-)

Power of Sherali-Adams LP       [Carbonnel, Migero, Ž. SICOMP’21+]
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 [Hadlock SICOMP’75]

 [Grohe Combinatorica’03,
Demaine et al. FOCS’05]

 [Arora et al. STOC’95,
Frieze & Kannan FOCS’96]

planar PTIME 

excluded-minor PTAS

dense PTAS

Thm:  PTAS for Max-CSPs that are treewidth-pliable. [Romero, Wrochna,  Ž. SODA’21]

How do you unify sparse and dense graph classes?

fr-tw-fragility hyperfiniteness regularity partitions

:  𝒞 ∀ε > 0∃k ∈ ℕ∀G ∈ 𝒞∃G′  with tw(G′ ) ≤ k ∧ dopt(G, G′ ) ≤ ε
 dopt(G, G′ ) = infε Max-Cut(G) = (1 ± ε)Max-Cut(G′ )
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Satisfy a relaxed version of the constraints!
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find a c-colouring of a k-colourable graph

(k,c)-colour

Conjecture: for any constant 3≦k≦c, (k,c)-colour is NP-hard.
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(k, k) for k ≥ 3

(k,2k − 1) for k ≥ 3

 [Karp CCC’72]

 [Garey & Johnson JACM’76]

 [Khanna et al. Combinatorica’00]

 [Brakensiek & Guruswami CCC’16]

 [Bulín et al. STOC’19]

(k,2k − 2) for k ≥ 3

Known hardness:

Finding a c-colouring a 3-colourable graph believed to be hard!
(but only known for )3 ≤ c ≤ 5
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Approximate Graph Homomorphism

 [Krokhin, Opršal, Wrochna, Ž. ‘21+]

Thank you!

Finding a 3-colouring of a 2-colourable graph easy!

Thm:  Finding a 3-colouring of  (2+ )-colourable graph is NP-hard.ε

4-ε

every non-bipartite 
3-colourable H

topology
matters!


