
Chalmers

Automated Program Reasoning

Laura Kovács

Chalmers

Automated Reasoning

in Systems Engineering

In a vague sense, automated reasoning involves:

1. Representing a problem as a mathematical/logical statement

2. Computer-supported automatic check whether this statement is true

Chalmers

My group @ TU Wien applies automated reasoning for:

- Software correctness

- Generating program properties

- Software synthesis

- System security

- …

Automated Reasoning

in Program Analysis

Chalmers

Automated Reasoning

in Program Analysis

My group @ TU Wien applies automated reasoning for:

- Software correctness

- Generating program properties

- Software synthesis

- System security

- …

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Software Correctness

(ex. ~200kLoC, VAMPIRE prover)

Chalmers

Chalmers

Laura Kovács

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1;

end do

Automated Reasoning for Software Correctness

Chalmers

Chalmers

Laura Kovács

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1;

end do

Safety property:

(p)(0≤p<b

(q)(0≤q<a B[p]=A[q]+h(p) A[q]>0)

Automated Reasoning for Software Correctness

Chalmers

Chalmers

Laura Kovács

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1;

end do

cnt=0, fib1=1, fib2=0;

while (cnt<n) do

t=fib1; fib1=fib1+fib2; fib2=t; cnt++;

end do

h

Automated Reasoning for Software Correctness

Chalmers

Chalmers

Laura Kovács

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1;

end do

cnt=0, fib1=1, fib2=0;

while (cnt<n) do

t=fib1; fib1=fib1+fib2; fib2=t; cnt++;

end do

h

Safety property:

fib14+ fib24 + 2*fib1*fib23 – 2 fib13*fib2 -

fib12*fib22 -1 = 0

Automated Reasoning for Software Correctness

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Software Correctness

Generating and Ensuring

Safety Properties

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security and Privacy

Generating and Ensuring

Security and Privacy Properties

Chalmers

Chalmers

Laura Kovács

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Automated Reasoning for Security and Privacy

- Array a: bit-wise representation of a secret key

- Hamming weight hw: number of 1s in the key

Chalmers

Chalmers

Laura Kovács

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Automated Reasoning for Security and Privacy

- Array a: bit-wise representation of a secret key

- Hamming weight hw: number of 1s in the key

- Leaking hw ?

(e.g. measure of side-channel leakage)

Chalmers

Chalmers

Laura Kovács

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Automated Reasoning for Security and Privacy

- Array a: bit-wise representation of a secret key

- Hamming weight hw: number of 1s in the key

- Leaking hw ?

- No matter what permutation of a,

the hw is the same

Chalmers

Chalmers

Laura Kovács

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Automated Reasoning for Security and Privacy

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Relational Verification

Chalmers

Chalmers

Laura Kovács

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Automated Reasoning for Security and Privacy

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Relational Verification

Input array a v w

Input array aw v

Chalmers

Chalmers

Laura Kovács

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Relational Verification

Input array a v w

Input array aw v

hw = hw

Automated Reasoning for Security and Privacy

Chalmers

Chalmers

Laura Kovács

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Automated Reasoning for Security and Privacy

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Relational Verification

Input array a v w

Input array aw v

hw = hw

Induction

Chalmers

Chalmers

Laura Kovács

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Automated Reasoning for Security and Privacy

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Relational Verification

Input array a v w

Input array aw v

hw = hw

Induction
Commutativity

Chalmers

Chalmers

Laura Kovács

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Automated Reasoning for Security and Privacy

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Relational Verification

Input array a v w

Input array aw v

hw = hw

Induction
Commutativity

Induction

Chalmers

Chalmers

Laura Kovács

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Automated Reasoning for Security and Privacy

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Relational Verification

Input array a v w

Input array aw v

hw = hw

Chalmers

Chalmers

Laura Kovács

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Automated Reasoning for Security and Privacy

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Input array a v w

Input array aw v

hw = hw

Relational Verification (non-interference, sensitivity)

Chalmers

Chalmers

Laura Kovács

i=0, hw=0;

while (i<n) do

hw=hw+a[i];

i=i+1;

end do

Automated Reasoning for Security and Privacy

Input array a v w

w v

hw = hw

We proved 11 unique
problems from security and

privacy.

Vampire

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security, Privacy, Safety, …

New Reasoning Challenges:

• Software semantics in (extensions) of first-order logic

• First-order theories of data structures

• Induction

Chalmers

What Kind of Automated Reasoners can be Used?

Input Examples Impact

SAT Solver
Propositional

formulae

MiniSat,

Lingeling
Intel

SMT Solvers
(First-order)

formulae + theories
CVC4, Z3

Microsoft,

Amazon

Theorem Provers
First-order formulae

(+ theories)
Vampire, E Intel, Amazon

Proof Assistants

(interactive)

Higher-order

formulae
Isabelle, Coq Intel, Apple

Chalmers

Our Automated Reasoner: VAMPIRE

Input Examples Impact

SAT Solver
Propositional

formulae

MiniSat,

Lingeling
Intel

SMT Solvers
(First-order)

formulae + theories
CVC4, Z3

Microsoft,

Amazon

Theorem Provers
First-order formulae

(+ theories)
Vampire, E Intel, Amazon

Proof Assistants

(interactive)

Higher-order

formulae
Isabelle, Coq Intel, Apple

Chalmers

What is VAMPIRE?

• An automated theorem prover for first-order logic and theories.

https://vprover.github.io/download.html

• Completely automatic: once you started a proof attempt, it can only

be interrupted by terminating the process.

• Champion of the CASC world-cup

in first-order theorem proving:

won CASC > 55 times.

Chalmers

VAMPIRE

• It produces detailed proofs

• It competes with SMT solvers on their problems

• In normal operation, it is saturation-based

• It is portfolio-based - works best when uses lots of strategies

• It supports lots of extra features and options helpful, for example,

system security, including induction and theory reasoning.

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE

Proof by Refutation

Given an input problem with assumptions F1, …, Fn and goal G:

1. Negate the conjecture (¬G);

2. Establish unsatisfiability of the set of formulas F1, …, Fn, ¬G.

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE – Saturation

Search space
(initially,

input problem)

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE – Saturation

Search space

Given formula

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE – Saturation

Search space

Given formula

Candidate formulae

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE – Saturation

Search space

Given formula

Candidate formulae

Children

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE – Saturation

Search space

Children

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE – Saturation

Search space

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE – Saturation

Search space

Given formula

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE – Saturation

Search space

Given formula

Candidate formulae

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE – Saturation

Search space

Given formula

Candidate formulae

Children

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE – Saturation

Search space

Children

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE – Saturation

Search space

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE – Saturation

Search space

MEMORY

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE – In practice

In practice there are three possible scenarios:

1. At some moment proof is found; in this case, the input is valid/true.

2. Saturation will terminate without ever finding a proof, in this case the

input is satisfiable.

3. Saturation will run until we run out of resources, but without ever finding

a proof. In this case it is unknown whether the input is valid.

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE – In practice

In practice there are three possible scenarios:

1. At some moment proof is found; in this case, the input is valid/true.

2. Saturation will terminate without ever finding a proof, in this case the

input is satisfiable.

3. Saturation will run until we run out of resources, but without ever finding

a proof. In this case it is unknown whether the input is valid.

CHALLENGE: How to solve unknown?

Chalmers

Chalmers

Laura Kovács

Automated Reasoning with VAMPIRE – In practice

In practice there are three possible scenarios:

1. At some moment proof is found; in this case, the input is valid/true.

2. Saturation will terminate without ever finding a proof, in this case the

input is satisfiable.

3. Saturation will run until we run out of resources, but without ever finding

a proof. In this case it is unknown whether the input is valid.

CHALLENGE: How to solve unknown? How to improve performance?

Chalmers

Automated Program Reasoning – Our recipe

First-Order Theorem Proving in Software Development

Chalmers

• Artificial Intelligence

• Math

• Logic

I can’t get no satisfaction:

-and I try …

-and I try …

-and I try …

-and I try

[The Rolling Stones]

Automated Program Reasoning – Our recipe

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security, Privacy, Safety, …

New Reasoning Challenges in Systems Engineering

• Software semantics in (extensions) of first-order logic

• First-order theories of data structures

• Induction

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security, Privacy, Safety, …

New Reasoning Challenges in Systems Engineering

• Software semantics in (extensions) of first-order logic

• First-order theories of data structures

• Induction

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security, Privacy, Safety, …

New Reasoning Challenges in Systems Engineering

• Software semantics in (extensions) of first-order logic

• First-order theories of data structures

• Induction

Program variables as functions

capturing all variables values

throughout the loop

Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning

Loop
Loop

Requirements

Extended Loop Language → First-Order Language Extended with Extra Symbols

Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning

Loop
Loop

Requirements

Extended Loop Language → First-Order Language Extended with Extra Symbols

Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning

Loop Loop Properties
Loop

Requirements

Extend language with

extra symbols:

loop cnt,

array update predicates

Extended Loop Language → First-Order Language Extended with Extra Symbols

Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning

Loop Loop Properties
Loop

Requirements

Extend language with

extra symbols:

loop cnt,

array update predicates

Extended Loop Language → First-Order Language Extended with Extra Symbols

Derive consequences

Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning

Loop Loop Properties
Loop

Requirements

Extend language with

extra symbols:

loop cnt,

array update predicates

Trace Lemmas

Static Analyis of

Loop Updates

Derive consequences

Saturation-Based

Theorem Proving

Extended Loop Language → Trace Logicrder Language

Extended with Extra

Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b);

b=b+1;

else C[c]=A[a];

c=c+1;

a=a+1;

end do

assume ((∀x) h(x)=0) ∧ (0<n<a.length)

assert (∀p) (0≤p<b ⇒(∃i)(0≤i<n ∧ A[i]=B[p]))

Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b);

b=b+1;

else C[c]=A[a];

c=c+1;

a=a+1;

end do

assume ((∀x) h(x)=0) ∧ (0<n<a.length)

assert (∀p) (0≤p<b ⇒(∃i)(0≤i<n ∧ A[i]=B[p]))

- loop counter cnt

- loop iteration predicate iter

- loop variable v as functions v(i) of iteration i

- array update properties updV(i,p), updV(i,p,x)
for array variable V, loop iteration i, array
position p, array element value x

Extra Symbols of Trace Logic

Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b);

b=b+1;

else C[c]=A[a];

c=c+1;

a=a+1;

end do

assume ((∀x) h(x)=0) ∧ (0<n<a.length)

assert (∀p) (0≤p<b ⇒(∃i)(0≤i<n ∧ A[i]=B[p]))

(∀i) (i∊iter ⇔ 0≤i<cnt)

(∀i) (i∊iter ⇒ a(i)<a(i+1))

(∀i) (i∊iter ⇒ (b(i)=b(i+1) ∨ b(i+1)=b(i)+1)

(∀p) (0 ≤p<b(cnt) ⇒ ((∃i)i∊iter ∧ p=b(i) ∧ A[a(i)]>0))

updB(i,p,x) ∧ (∀j>i)(¬updB(i,p,x) ⇒B(cnt)[p]=x)

(∀i) (i∊iter ∧ A[a(i)]>0 ⇒ (B(i+1)[b(i)]=A[a(i)] ∧

b(i+1)=b(i)+1 ∧

c(i+1)=c(i)))

Loop Properties in Trace Logic

Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b);

b=b+1;

else C[c]=A[a];

c=c+1;

a=a+1;

end do

assume ((∀x) h(x)=0) ∧ (0<n<a.length)

assert (∀p) (0≤p<b ⇒(∃i)(0≤i<n ∧ A[i]=B[p]))

(∀i) (i∊iter ⇔ 0≤i<cnt)

(∀i) (i∊iter ⇒ a(i)<a(i+1))

(∀i) (i∊iter ⇒ (b(i)=b(i+1) ∨ b(i+1)=b(i)+1)

(∀p) (0 ≤p<b(cnt) ⇒ ((∃i)i∊iter ∧ p=b(i) ∧ A[a(i)]>0))

updB(i,p,x) ∧ (∀j>i)(¬updB(i,p,x) ⇒B(cnt)[p]=x)

(∀i) (i∊iter ∧ A[a(i)]>0 ⇒ (B(i+1)[b(i)]=A[a(i)] ∧

b(i+1)=b(i)+1 ∧

c(i+1)=c(i)))

Loop Properties in Trace Logic

Derive consequences

using saturation-based theorem-proving

Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b);

b=b+1;

else C[c]=A[a];

c=c+1;

a=a+1;

end do

assume ((∀x) h(x)=0) ∧ (0<n<a.length)

assert (∀p) (0≤p<b ⇒(∃i)(0≤i<n ∧ A[i]=B[p]))

(∀i) (i∊iter ⇔ 0≤i<cnt)

(∀i) (i∊iter ⇒ a(i)<a(i+1))

(∀i) (i∊iter ⇒ (b(i)=b(i+1) ∨ b(i+1)=b(i)+1)

(∀p) (0 ≤p<b(cnt) ⇒ ((∃i)i∊iter ∧ p=b(i) ∧ A[a(i)]>0))

updB(i,p,x) ∧ (∀j>i)(¬updB(i,p,x) ⇒B(cnt)[p]=x)

(∀i) (i∊iter ∧ A[a(i)]>0 ⇒ (B(i+1)[b(i)]=A[a(i)] ∧

b(i+1)=b(i)+1 ∧

c(i+1)=c(i)))

Loop Properties in Trace Logic

Derive consequences

(∀p) (0≤p<b ⇒(∃i)(0≤i<a ∧ A[i]=B[p]))

Invariant

using saturation-based theorem-proving

Chalmers

Tailored changes in

saturation

Laura Kovács

Trace Logic for Automated Loop Reasoning

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b);

b=b+1;

else C[c]=A[a];

c=c+1;

a=a+1;

end do

assume ((∀x) h(x)=0) ∧ (0<n<a.length)

assert (∀p) (0≤p<b ⇒(∃i)(0≤i<n ∧ A[i]=B[p]))

(∀i) (i∊iter ⇔ 0≤i<cnt)

(∀i) (i∊iter ⇒ a(i)<a(i+1))

(∀i) (i∊iter ⇒ (b(i)=b(i+1) ∨ b(i+1)=b(i)+1)

(∀p) (0 ≤p<b(cnt) ⇒ ((∃i)i∊iter ∧ p=b(i) ∧ A[a(i)]>0))

updB(i,p,x) ∧ (∀j>i)(¬updB(i,p,x) ⇒B(cnt)[p]=x)

(∀i) (i∊iter ∧ A[a(i)]>0 ⇒ (B(i+1)[b(i)]=A[a(i)] ∧

b(i+1)=b(i)+1 ∧

c(i+1)=c(i)))

Loop Properties in Trace Logic

Derive consequences

using saturation-based theorem-proving

Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning

Deriving useful loop properties in saturation

- for every loop variable v → target symbols v0 and v

v(0)=v0 and v(cnt)=v

Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning

- for every loop variable v → target symbols v0 and v

v(0)=v0 and v(cnt)=v

- useable symbols:

- target or interpreted symbols

- skolem functions introduced while preprocessing

Deriving useful loop properties in saturation

Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning

- for every loop variable v → target symbols v0 and v

v(0)=v0 and v(cnt)=v

- useable symbols:

- target or interpreted symbols

- skolem functions introduced while preprocessing

- useful clauses:

- contain only useable symbols

- contains at least a target symbols or a skolem functions

Deriving useful loop properties in saturation

Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning

- for every loop variable v → target symbols v0 and v

v(0)=v0 and v(cnt)=v

- useable symbols:

- target or interpreted symbols

- skolem functions introduced while preprocessing

- useful clauses:

- contain only useable symbols

- contains at least a target symbols or a skolem functions

x+y=y+x is not useful

Deriving useful loop properties in saturation

Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning

- for every loop variable v → target symbols v0 and v

v(0)=v0 and v(cnt)=v

- useable symbols:

- target or interpreted symbols

- skolem functions introduced while preprocessing

- useful clauses:

- contain only useable symbols

- contains at least a target symbols or a skolem functions

- simplication/derivation ordering ≻ in saturation :

- useless symbols ≻ useable symbols

Deriving useful loop properties in saturation

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security, Privacy, Safety, …

New Reasoning Challenges in Systems Engineering

• Software semantics in trace logic

• First-order theories of data structures

• Induction

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security, Privacy, Safety, …

New Reasoning Challenges in Systems Engineering

• Software semantics in (extensions) of first-order logic

• First-order theories of data structures

• Induction

Program variables as functions

capturing all variables values

throughout the loop

Proved 24 unique problems

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security, Privacy, Safety, …

New Reasoning Challenges in Systems Engineering

➢ Software semantics in trace logic

➢ First-order theories of data structures

reasoning with quantifiers + int/real, naturals/term algebras, arrays, …

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security, Privacy, Safety, …

➢ First-order theories of data structures

reasoning with quantifiers + int/real, naturals/term algebras, arrays, …

New Reasoning Challenges in Systems Engineering

➢ Software semantics in trace logic

- Term algebras: subterm predicate for finite axiomatisations

- Arrays: polymorphic theory with extensionality

- Integers/reals: incomplete but sound set of axioms

- Natural numbers: integer vs term algebra encoding

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security, Privacy, Safety, …

➢ First-order theories of data structures

reasoning with quantifiers + int/real, naturals/term algebras, arrays, …

New Reasoning Challenges in Systems Engineering

➢ Software semantics in trace logic

- Term algebras: subterm predicate for finite axiomatisations

- Arrays: polymorphic theory with extensionality

- Integers/reals: incomplete but sound set of axioms

- Natural numbers: integer vs term algebra encoding
Proved 50 unique problems

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security, Privacy, Safety, …

➢ First-order theories of data structures

reasoning with quantifiers + int/real, naturals/term algebras, arrays, …

New Reasoning Challenges in Systems Engineering

➢ Software semantics in trace logic

- Term algebras: subterm predicate for finite axiomatisations

- Arrays: polymorphic theory with extensionality

- Integers/reals: incomplete but sound set of axioms

- Natural numbers: integer vs term algebra encoding

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security, Privacy, Safety, …

➢ First-order theories of data structures

reasoning with quantifiers + int/real, naturals/term algebras, arrays, …

New Reasoning Challenges in Systems Engineering

➢ Software semantics in trace logic

- Term algebras: subterm predicate for finite axiomatisations

- Arrays: polymorphic theory with extensionality

- Integers/reals: incomplete but sound set of axioms

- Natural numbers: integer vs term algebra encoding

Bridiging the gap between

SMT solving and first-order theorem proving

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security, Privacy, Safety, …

➢ First-order theories of data structures

reasoning with quantifiers + int/real, naturals/term algebras, arrays, …

New Reasoning Challenges in Systems Engineering

➢ Software semantics in trace logic

• Induction

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security, Privacy, Safety, …

New Reasoning Challenges in Systems Engineering

➢ Software semantics

in extensions of trace logic with algebraic and probabilistic features

• Induction

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security, Privacy, Safety, …

New Reasoning Challenges in Systems Engineering

➢ Software semantics

in extensions of trace logic with algebraic and probabilistic features

• Induction

Proved 9+ unique problems

Chalmers

Chalmers

Laura Kovács

Automated Reasoning for Security, Privacy, Safety, …

➢ First-order theories of data structures

reasoning with quantifiers + int/real, naturals/term algebras, arrays, …

New Reasoning Challenges in Systems Engineering

➢ Software semantics

in trace logic

➢ Induction

not a first-order property

Chalmers

Conclusion and Outlook

1. Automated reasoning will remain central in rigorous systems engineering.

The role of automated reasoning in these areas is and will be growing.

Chalmers

Conclusion and Outlook

1. Automated reasoning will remain central in rigorous systems engineering.

The role of automated reasoning in these areas is and will be growing.

2. Automated reasoners will be used by a large number of users who do

not understand automated reasoning and by users with very elementary

knowledge of logic.

Chalmers

Conclusion and Outlook

1. Automated reasoning will remain central in rigorous systems engineering.

The role of automated reasoning in these areas is and will be growing.

2. Automated reasoners will be used by a large number of users who do

not understand automated reasoning and by users with very elementary

knowledge of logic.

Formal reasoning cannot be handled by engineers alone.

Chalmers

Conclusion and Outlook

1. Automated reasoning will remain central in rigorous systems engineering.

The role of automated reasoning in these areas is and will be growing.

2. Automated reasoners will be used by a large number of users who do

not understand automated reasoning and by users with very elementary

knowledge of logic.

Formal reasoning cannot be handled by engineers alone.

Formal reasoning cannot be handled by experts alone.

Chalmers

Conclusion and Outlook

1. Automated reasoning will remain central in rigorous systems engineering.

The role of automated reasoning in these areas is and will be growing.

2. Automated reasoners will be used by a large number of users who do

not understand automated reasoning and by users with very elementary

knowledge of logic.

3. Automated reasoning with theories will remain the main challenge in

ensuring system reliability (at least) for the next decade.

