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Automated Reasoning 

in Systems Engineering

In a vague sense, automated reasoning involves: 

1. Representing a problem as a mathematical/logical statement

2. Computer-supported automatic check whether this statement is true
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My group @ TU Wien applies automated reasoning for:

- Software correctness

- Generating program properties

- Software synthesis

- System security

- …
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Automated Reasoning for Software Correctness

(ex. ~200kLoC, VAMPIRE prover)
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a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1; 

end do
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a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1; 

end do

Safety property:

(p)(0≤p<b 

(q)(0≤q<a  B[p]=A[q]+h(p)  A[q]>0)

Automated Reasoning for Software Correctness
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a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1; 

end do

cnt=0, fib1=1, fib2=0;

while (cnt<n) do

t=fib1; fib1=fib1+fib2; fib2=t; cnt++;

end do

h

Automated Reasoning for Software Correctness
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a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); b=b+1;

else C[c]=A[a]; c=c+1;

a=a+1; 

end do

cnt=0, fib1=1, fib2=0;

while (cnt<n) do

t=fib1; fib1=fib1+fib2; fib2=t; cnt++;

end do

h

Safety property:

fib14+ fib24 + 2*fib1*fib23 – 2 fib13*fib2 -

fib12*fib22 -1 = 0

Automated Reasoning for Software Correctness
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Automated Reasoning for Software Correctness

Generating and Ensuring 

Safety Properties
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Automated Reasoning for Security and Privacy

Generating and Ensuring 

Security and Privacy Properties
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i=0, hw=0;

while (i<n) do

hw=hw+a[i]; 

i=i+1; 

end do

Automated Reasoning for Security and Privacy

- Array a: bit-wise representation of a secret key

- Hamming weight hw:  number of 1s in the key 
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i=0, hw=0;

while (i<n) do

hw=hw+a[i]; 

i=i+1; 

end do

Automated Reasoning for Security and Privacy

- Array a: bit-wise representation of a secret key

- Hamming weight hw:  number of 1s in the key 

- Leaking hw ?

(e.g. measure of side-channel leakage)
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i=0, hw=0;

while (i<n) do

hw=hw+a[i]; 

i=i+1; 

end do

Automated Reasoning for Security and Privacy

- Array a: bit-wise representation of a secret key

- Hamming weight hw:  number of 1s in the key 

- Leaking hw ?

- No matter what permutation of a, 

the hw is the same
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end do

Relational Verification 
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Relational Verification 

Input array a v w

Input array aw v

hw =             hw

Induction
Commutativity
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i=0, hw=0;

while (i<n) do

hw=hw+a[i]; 

i=i+1; 

end do

Automated Reasoning for Security and Privacy

i=0, hw=0;

while (i<n) do

hw=hw+a[i]; 

i=i+1; 

end do

Input array a v w

Input array aw v

hw =             hw

Relational Verification (non-interference, sensitivity)
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i=0, hw=0;

while (i<n) do

hw=hw+a[i]; 

i=i+1; 

end do

Automated Reasoning for Security and Privacy

Input array a v w

w v

hw =             hw

We proved 11 unique 
problems from security and 

privacy.

Vampire
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Automated Reasoning for Security, Privacy, Safety, …

New Reasoning Challenges:

• Software semantics in (extensions) of first-order logic

• First-order theories of data structures 

• Induction
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What Kind of Automated Reasoners can be Used?

Input Examples Impact

SAT Solver
Propositional 

formulae

MiniSat, 

Lingeling
Intel

SMT Solvers
(First-order) 

formulae + theories
CVC4, Z3

Microsoft, 

Amazon

Theorem Provers
First-order formulae

(+ theories)
Vampire, E Intel, Amazon

Proof Assistants

(interactive)

Higher-order 

formulae
Isabelle, Coq Intel, Apple



Chalmers

Our Automated Reasoner: VAMPIRE

Input Examples Impact

SAT Solver
Propositional 

formulae

MiniSat, 

Lingeling
Intel

SMT Solvers
(First-order) 

formulae + theories
CVC4, Z3

Microsoft, 

Amazon

Theorem Provers
First-order formulae

(+ theories)
Vampire, E Intel, Amazon

Proof Assistants

(interactive)

Higher-order 

formulae
Isabelle, Coq Intel, Apple
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What is VAMPIRE?

• An automated theorem prover for first-order logic and theories.

https://vprover.github.io/download.html

• Completely automatic: once you started a proof attempt, it can only 

be interrupted by terminating the process.

• Champion of the CASC world-cup

in first-order theorem proving: 

won CASC > 55 times.
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VAMPIRE

• It produces detailed proofs

• It competes with SMT solvers on their problems

• In normal operation, it is saturation-based

• It is portfolio-based - works best when uses lots of strategies

• It supports lots of extra features and options helpful, for example, 

system security, including induction and theory reasoning.
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Automated Reasoning with VAMPIRE 

Proof by Refutation

Given an input problem with assumptions F1, …,  Fn and goal G:

1. Negate the conjecture (¬G);

2. Establish unsatisfiability of the set of formulas F1, …,  Fn, ¬G.
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Automated Reasoning with VAMPIRE – Saturation

Search space 
(initially, 

input problem)
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Given formula
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Automated Reasoning with VAMPIRE – Saturation

Search space 
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Automated Reasoning with VAMPIRE – Saturation

Search space 

MEMORY
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Automated Reasoning with VAMPIRE – In practice

In practice there are three possible scenarios:

1. At some moment proof is found; in this case, the input is valid/true.

2. Saturation will terminate without ever finding a proof, in this case the  

input is satisfiable.

3. Saturation will run until we run out of resources, but without ever finding

a proof. In this case it is unknown whether the input is valid.
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1. At some moment proof is found; in this case, the input is valid/true.

2. Saturation will terminate without ever finding a proof, in this case the  

input is satisfiable.

3. Saturation will run until we run out of resources, but without ever finding

a proof. In this case it is unknown whether the input is valid.

CHALLENGE: How to solve unknown? 
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Automated Reasoning with VAMPIRE – In practice

In practice there are three possible scenarios:

1. At some moment proof is found; in this case, the input is valid/true.

2. Saturation will terminate without ever finding a proof, in this case the  

input is satisfiable.

3. Saturation will run until we run out of resources, but without ever finding

a proof. In this case it is unknown whether the input is valid.

CHALLENGE: How to solve unknown? How to improve performance?
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Automated Program Reasoning – Our recipe

First-Order Theorem Proving in Software Development
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• Artificial Intelligence

• Math

• Logic

I can’t get no satisfaction:

-and I try …

-and I try …

-and I try …

-and I try 

[The Rolling Stones]

Automated Program Reasoning – Our recipe
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Automated Reasoning for Security, Privacy, Safety, …

New Reasoning Challenges in Systems Engineering

• Software semantics in (extensions) of first-order logic

• First-order theories of data structures 

• Induction
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Automated Reasoning for Security, Privacy, Safety, …

New Reasoning Challenges in Systems Engineering

• Software semantics in (extensions) of first-order logic

• First-order theories of data structures 

• Induction

Program variables as functions 

capturing all variables values 

throughout the loop
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Trace Logic for Automated Loop Reasoning 

Loop
Loop 

Requirements

Extended Loop Language → First-Order Language Extended with Extra Symbols



Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning 

Loop
Loop 

Requirements

Extended Loop Language → First-Order Language Extended with Extra Symbols



Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning 

Loop Loop Properties
Loop 

Requirements

Extend language with 

extra symbols: 

loop cnt, 

array update predicates

Extended Loop Language → First-Order Language Extended with Extra Symbols
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Loop Loop Properties
Loop 

Requirements

Extend language with 

extra symbols: 

loop cnt, 

array update predicates

Extended Loop Language → First-Order Language Extended with Extra Symbols

Derive consequences
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Trace Logic for Automated Loop Reasoning 

Loop Loop Properties
Loop 

Requirements

Extend language with 

extra symbols: 

loop cnt, 

array update predicates

Trace Lemmas

Static Analyis of 

Loop Updates

Derive consequences

Saturation-Based 

Theorem Proving

Extended Loop Language → Trace Logicrder Language 

Extended with Extra
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Trace Logic for Automated Loop Reasoning 

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); 

b=b+1;

else C[c]=A[a];

c=c+1;

a=a+1; 

end do

assume ((∀x) h(x)=0)  ∧ (0<n<a.length)

assert (∀p) (0≤p<b ⇒(∃i)(0≤i<n ∧ A[i]=B[p]))
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Trace Logic for Automated Loop Reasoning 

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); 

b=b+1;

else C[c]=A[a];

c=c+1;

a=a+1; 

end do

assume ((∀x) h(x)=0)  ∧ (0<n<a.length)

assert (∀p) (0≤p<b ⇒(∃i)(0≤i<n ∧ A[i]=B[p]))

- loop counter cnt

- loop iteration predicate iter

- loop variable v as functions v(i) of iteration i

- array update properties updV(i,p), updV(i,p,x)
for array variable V, loop iteration i, array 
position p, array element value x

Extra Symbols of Trace Logic
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Trace Logic for Automated Loop Reasoning 

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); 

b=b+1;

else C[c]=A[a];

c=c+1;

a=a+1; 

end do

assume ((∀x) h(x)=0)  ∧ (0<n<a.length)

assert (∀p) (0≤p<b ⇒(∃i)(0≤i<n ∧ A[i]=B[p]))

(∀i) (i∊iter ⇔ 0≤i<cnt)

(∀i) (i∊iter ⇒ a(i)<a(i+1))

(∀i) (i∊iter ⇒ (b(i)=b(i+1) ∨ b(i+1)=b(i)+1)

(∀p) (0 ≤p<b(cnt) ⇒ ((∃i)i∊iter ∧ p=b(i) ∧ A[a(i)]>0))

updB(i,p,x) ∧ (∀j>i)(¬updB(i,p,x) ⇒B(cnt)[p]=x)

(∀i) (i∊iter ∧ A[a(i)]>0 ⇒ (B(i+1)[b(i)]=A[a(i)] ∧

b(i+1)=b(i)+1 ∧

c(i+1)=c(i)))

Loop Properties in Trace Logic
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Trace Logic for Automated Loop Reasoning 
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b(i+1)=b(i)+1 ∧

c(i+1)=c(i)))

Loop Properties in Trace Logic

Derive consequences

using saturation-based theorem-proving
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Trace Logic for Automated Loop Reasoning 
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while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); 

b=b+1;

else C[c]=A[a];

c=c+1;

a=a+1; 

end do

assume ((∀x) h(x)=0)  ∧ (0<n<a.length)

assert (∀p) (0≤p<b ⇒(∃i)(0≤i<n ∧ A[i]=B[p]))
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(∀i) (i∊iter ⇒ a(i)<a(i+1))
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(∀p) (0 ≤p<b(cnt) ⇒ ((∃i)i∊iter ∧ p=b(i) ∧ A[a(i)]>0))

updB(i,p,x) ∧ (∀j>i)(¬updB(i,p,x) ⇒B(cnt)[p]=x)

(∀i) (i∊iter ∧ A[a(i)]>0 ⇒ (B(i+1)[b(i)]=A[a(i)] ∧

b(i+1)=b(i)+1 ∧

c(i+1)=c(i)))

Loop Properties in Trace Logic

Derive consequences

(∀p) (0≤p<b ⇒(∃i)(0≤i<a ∧ A[i]=B[p]))

Invariant

using saturation-based theorem-proving
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Trace Logic for Automated Loop Reasoning 

a=0, b=0, c=0;

while (a<n) do

if A[a]>0 then B[b]=A[a]+h(b); 

b=b+1;

else C[c]=A[a];

c=c+1;
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end do
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updB(i,p,x) ∧ (∀j>i)(¬updB(i,p,x) ⇒B(cnt)[p]=x)

(∀i) (i∊iter ∧ A[a(i)]>0 ⇒ (B(i+1)[b(i)]=A[a(i)] ∧

b(i+1)=b(i)+1 ∧

c(i+1)=c(i)))

Loop Properties in Trace Logic

Derive consequences

using saturation-based theorem-proving



Chalmers

Chalmers

Laura Kovács

Trace Logic for Automated Loop Reasoning 

Deriving useful loop properties in saturation

- for every loop variable v → target symbols v0 and v

v(0)=v0 and v(cnt)=v
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Trace Logic for Automated Loop Reasoning 

- for every loop variable v → target symbols v0 and v

v(0)=v0 and v(cnt)=v

- useable symbols: 

- target or interpreted symbols

- skolem functions introduced while preprocessing

Deriving useful loop properties in saturation
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Trace Logic for Automated Loop Reasoning 

- for every loop variable v → target symbols v0 and v

v(0)=v0 and v(cnt)=v

- useable symbols: 

- target or interpreted symbols

- skolem functions introduced while preprocessing

- useful clauses: 

- contain only useable symbols

- contains at least a target symbols or a skolem functions

Deriving useful loop properties in saturation
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Trace Logic for Automated Loop Reasoning 

- for every loop variable v → target symbols v0 and v

v(0)=v0 and v(cnt)=v

- useable symbols: 

- target or interpreted symbols

- skolem functions introduced while preprocessing

- useful clauses: 

- contain only useable symbols

- contains at least a target symbols or a skolem functions

x+y=y+x is not useful

Deriving useful loop properties in saturation
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Trace Logic for Automated Loop Reasoning 

- for every loop variable v → target symbols v0 and v

v(0)=v0 and v(cnt)=v

- useable symbols: 

- target or interpreted symbols

- skolem functions introduced while preprocessing

- useful clauses: 

- contain only useable symbols

- contains at least a target symbols or a skolem functions

- simplication/derivation ordering ≻ in saturation : 

- useless symbols ≻ useable symbols

Deriving useful loop properties in saturation
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Automated Reasoning for Security, Privacy, Safety, …

New Reasoning Challenges in Systems Engineering

• Software semantics in trace logic

• First-order theories of data structures 

• Induction
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Automated Reasoning for Security, Privacy, Safety, …

New Reasoning Challenges in Systems Engineering

• Software semantics in (extensions) of first-order logic

• First-order theories of data structures 

• Induction

Program variables as functions 

capturing all variables values 

throughout the loop

Proved 24 unique problems
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Automated Reasoning for Security, Privacy, Safety, …

New Reasoning Challenges in Systems Engineering

➢ Software semantics in trace logic

➢ First-order theories of data structures 

reasoning with quantifiers  +  int/real, naturals/term algebras, arrays, …
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Automated Reasoning for Security, Privacy, Safety, …

➢ First-order theories of data structures 

reasoning with quantifiers  +  int/real, naturals/term algebras, arrays, …

New Reasoning Challenges in Systems Engineering

➢ Software semantics in trace logic

- Term algebras: subterm predicate for finite axiomatisations

- Arrays: polymorphic theory with extensionality

- Integers/reals: incomplete but sound set of axioms

- Natural numbers: integer vs term algebra encoding
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- Natural numbers: integer vs term algebra encoding
Proved 50 unique problems
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- Natural numbers: integer vs term algebra encoding

Bridiging the gap between 

SMT solving and first-order theorem proving
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➢ First-order theories of data structures 

reasoning with quantifiers  +  int/real, naturals/term algebras, arrays, …

New Reasoning Challenges in Systems Engineering

➢ Software semantics

in trace logic

➢ Induction

not a first-order property
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Conclusion and Outlook

1. Automated reasoning will remain central in rigorous systems engineering.

The role of automated reasoning in these areas is and will be growing.

2. Automated reasoners will be used by a large number of users who do 

not understand automated reasoning and by users with very elementary 

knowledge of logic.

3. Automated reasoning with theories will remain the main challenge in 

ensuring system reliability (at least) for the next decade.


